tesseract/wordrec/wordrec.h

465 lines
21 KiB
C
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// File: wordrec.h
// Description: wordrec class.
// Author: Samuel Charron
//
// (C) Copyright 2006, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_WORDREC_WORDREC_H__
#define TESSERACT_WORDREC_WORDREC_H__
#include "associate.h"
#include "classify.h"
#include "dict.h"
#include "language_model.h"
#include "ratngs.h"
#include "matrix.h"
#include "matchtab.h"
#include "oldheap.h"
#include "gradechop.h"
#include "seam.h"
#include "findseam.h"
#include "callcpp.h"
#include "associate.h"
#include "pieces.h"
#include "ratngs.h"
#include "tally.h"
struct CHUNKS_RECORD;
struct SEARCH_RECORD;
class WERD_RES;
// A struct for storing child/parent pairs of the BLOB_CHOICE_LISTs
// to be processed by the segmentation search.
struct SEG_SEARCH_PENDING : public ELIST_LINK {
SEG_SEARCH_PENDING(int child_row_arg,
BLOB_CHOICE_LIST *parent_arg,
tesseract::LanguageModelFlagsType changed_arg) :
child_row(child_row_arg), parent(parent_arg), changed(changed_arg) {}
// Comparator function for add_sorted().
static int compare(const void *p1, const void *p2) {
const SEG_SEARCH_PENDING *e1 = *reinterpret_cast<
const SEG_SEARCH_PENDING * const *>(p1);
const SEG_SEARCH_PENDING *e2 = *reinterpret_cast<
const SEG_SEARCH_PENDING * const *>(p2);
if (e1->child_row == e2->child_row &&
e1->parent == e2->parent) return 0;
return (e1->child_row < e2->child_row) ? -1 : 1;
}
int child_row; // row of the child in the ratings matrix
BLOB_CHOICE_LIST *parent; // pointer to the parent BLOB_CHOICE_LIST
// Flags that indicate which language model components are still active
// on the parent path (i.e. recorded some changes to the language model
// state) and need to be invoked for this pending entry.
// This field is used as an argument to LanguageModel::UpdateState()
// in Wordrec::UpdateSegSearchNodes().
tesseract::LanguageModelFlagsType changed;
};
ELISTIZEH(SEG_SEARCH_PENDING);
namespace tesseract {
/* ccmain/tstruct.cpp *********************************************************/
class FRAGMENT:public ELIST_LINK
{
public:
FRAGMENT() { //constructor
}
FRAGMENT(EDGEPT *head_pt, //start
EDGEPT *tail_pt); //end
ICOORD head; //coords of start
ICOORD tail; //coords of end
EDGEPT *headpt; //start point
EDGEPT *tailpt; //end point
NEWDELETE2 (FRAGMENT)
};
ELISTIZEH (FRAGMENT)
class Wordrec : public Classify {
public:
// config parameters *******************************************************
BOOL_VAR_H(wordrec_no_block, FALSE, "Don't output block information");
BOOL_VAR_H(wordrec_enable_assoc, TRUE, "Associator Enable");
BOOL_VAR_H(force_word_assoc, FALSE,
"force associator to run regardless of what enable_assoc is."
"This is used for CJK where component grouping is necessary.");
INT_VAR_H(wordrec_num_seg_states, 30, "Segmentation states");
double_VAR_H(wordrec_worst_state, 1, "Worst segmentation state");
BOOL_VAR_H(fragments_guide_chopper, FALSE,
"Use information from fragments to guide chopping process");
INT_VAR_H(repair_unchopped_blobs, 1, "Fix blobs that aren't chopped");
double_VAR_H(tessedit_certainty_threshold, -2.25, "Good blob limit");
INT_VAR_H(chop_debug, 0, "Chop debug");
BOOL_VAR_H(chop_enable, 1, "Chop enable");
BOOL_VAR_H(chop_vertical_creep, 0, "Vertical creep");
INT_VAR_H(chop_split_length, 10000, "Split Length");
INT_VAR_H(chop_same_distance, 2, "Same distance");
INT_VAR_H(chop_min_outline_points, 6, "Min Number of Points on Outline");
INT_VAR_H(chop_inside_angle, -50, "Min Inside Angle Bend");
INT_VAR_H(chop_min_outline_area, 2000, "Min Outline Area");
double_VAR_H(chop_split_dist_knob, 0.5, "Split length adjustment");
double_VAR_H(chop_overlap_knob, 0.9, "Split overlap adjustment");
double_VAR_H(chop_center_knob, 0.15, "Split center adjustment");
double_VAR_H(chop_sharpness_knob, 0.06, "Split sharpness adjustment");
double_VAR_H(chop_width_change_knob, 5.0, "Width change adjustment");
double_VAR_H(chop_ok_split, 100.0, "OK split limit");
double_VAR_H(chop_good_split, 50.0, "Good split limit");
INT_VAR_H(chop_x_y_weight, 3, "X / Y length weight");
INT_VAR_H(segment_adjust_debug, 0, "Segmentation adjustment debug");
BOOL_VAR_H(assume_fixed_pitch_char_segment, FALSE,
"include fixed-pitch heuristics in char segmentation");
BOOL_VAR_H(use_new_state_cost, FALSE,
"use new state cost heuristics for segmentation state evaluation");
double_VAR_H(heuristic_segcost_rating_base, 1.25,
"base factor for adding segmentation cost into word rating."
"It's a multiplying factor, the larger the value above 1, "
"the bigger the effect of segmentation cost.");
double_VAR_H(heuristic_weight_rating, 1,
"weight associated with char rating in combined cost of state");
double_VAR_H(heuristic_weight_width, 0,
"weight associated with width evidence in combined cost of state");
double_VAR_H(heuristic_weight_seamcut, 0,
"weight associated with seam cut in combined cost of state");
double_VAR_H(heuristic_max_char_wh_ratio, 2.0,
"max char width-to-height ratio allowed in segmentation");
INT_VAR_H(wordrec_debug_level, 0, "Debug level for wordrec");
BOOL_VAR_H(enable_new_segsearch, false,
"Enable new segmentation search path.");
INT_VAR_H(segsearch_debug_level, 0, "SegSearch debug level");
INT_VAR_H(segsearch_max_pain_points, 2000,
"Maximum number of pain points stored in the queue");
INT_VAR_H(segsearch_max_futile_classifications, 10,
"Maximum number of pain point classifications per word.");
double_VAR_H(segsearch_max_char_wh_ratio, 2.0,
"Maximum character width-to-height ratio");
double_VAR_H(segsearch_max_fixed_pitch_char_wh_ratio, 2.0,
"Maximum character width-to-height ratio for"
"fixed pitch fonts");
// methods from wordrec/*.cpp ***********************************************
Wordrec();
virtual ~Wordrec();
void CopyCharChoices(const BLOB_CHOICE_LIST_VECTOR &from,
BLOB_CHOICE_LIST_VECTOR *to);
// tface.cpp
void program_editup(const char *textbase,
bool init_classifier,
bool init_permute);
BLOB_CHOICE_LIST_VECTOR *cc_recog(WERD_RES *word);
void program_editdown(inT32 elasped_time);
void set_pass1();
void set_pass2();
int end_recog();
BLOB_CHOICE_LIST *call_matcher(TBLOB* blob);
int dict_word(const WERD_CHOICE &word);
// wordclass.cpp
BLOB_CHOICE_LIST *classify_blob(TBLOB *blob,
const char *string,
C_COL color);
BLOB_CHOICE_LIST *fake_classify_blob(UNICHAR_ID class_id,
float rating, float certainty);
void update_blob_classifications(TWERD *word,
const BLOB_CHOICE_LIST_VECTOR &choices);
// bestfirst.cpp
BLOB_CHOICE_LIST_VECTOR *evaluate_chunks(CHUNKS_RECORD *chunks_record,
SEARCH_STATE search_state);
void update_ratings(const BLOB_CHOICE_LIST_VECTOR &new_choices,
const CHUNKS_RECORD *chunks_record,
const SEARCH_STATE search_state);
inT16 evaluate_state(CHUNKS_RECORD *chunks_record,
SEARCH_RECORD *the_search,
DANGERR *fixpt);
SEARCH_RECORD *new_search(CHUNKS_RECORD *chunks_record,
int num_joints,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
WERD_CHOICE *best_choice,
WERD_CHOICE *raw_choice,
STATE *state);
void best_first_search(CHUNKS_RECORD *chunks_record,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
WERD_RES *word,
STATE *state,
DANGERR *fixpt,
STATE *best_state);
void delete_search(SEARCH_RECORD *the_search);
void expand_node(FLOAT32 worst_priority,
CHUNKS_RECORD *chunks_record,
SEARCH_RECORD *the_search);
void replace_char_widths(CHUNKS_RECORD *chunks_record,
SEARCH_STATE state);
// Transfers the given state to the word's output fields: rebuild_word,
// best_state, box_word, and returns the corresponding blob choices.
BLOB_CHOICE_LIST_VECTOR *rebuild_current_state(
WERD_RES *word,
STATE *state,
BLOB_CHOICE_LIST_VECTOR *char_choices,
MATRIX *ratings);
// Creates a fake blob choice from the combination of the given fragments.
// unichar is the class to be made from the combination,
// expanded_fragment_lengths[choice_index] is the number of fragments to use.
// old_choices[choice_index] has the classifier output for each fragment.
// choice index initially indexes the last fragment and should be decremented
// expanded_fragment_lengths[choice_index] times to get the earlier fragments.
// Guarantees to return something non-null, or abort!
BLOB_CHOICE* rebuild_fragments(
const char* unichar,
const char* expanded_fragment_lengths,
int choice_index,
BLOB_CHOICE_LIST_VECTOR *old_choices);
// Creates a joined copy of the blobs between x and y (inclusive) and
// insert into the rebuild_word in word.
// Returns a deep copy of the classifier results for the blob.
BLOB_CHOICE_LIST *join_blobs_and_classify(
WERD_RES* word, int x, int y, int choice_index, MATRIX *ratings,
BLOB_CHOICE_LIST_VECTOR *old_choices);
STATE *pop_queue(HEAP *queue);
void push_queue(HEAP *queue, STATE *state, FLOAT32 worst_priority,
FLOAT32 priority, bool debug);
// segsearch.cpp
// SegSearch works on the lower diagonal matrix of BLOB_CHOICE_LISTs.
// Each entry in the matrix represents the classification choice
// for a chunk, i.e. an entry in row 2, column 1 represents the list
// of ratings for the chunks 1 and 2 classified as a single blob.
// The entries on the diagonal of the matrix are classifier choice lists
// for a single chunk from the maximal segmentation.
//
// The ratings matrix given to SegSearch represents the segmentation
// graph / trellis for the current word. The nodes in the graph are the
// individual BLOB_CHOICEs in each of the BLOB_CHOICE_LISTs in the ratings
// matrix. The children of each node (nodes connected by outgoing links)
// are the entries in the column that is equal to node's row+1. The parents
// (nodes connected by the incoming links) are the entries in the row that
// is equal to the node's column-1. Here is an example ratings matrix:
//
// 0 1 2 3 4
// -------------------------
// 0| c,( |
// 1| d l,1 |
// 2| o |
// 3| c,( |
// 4| g,y l,1 |
// -------------------------
//
// In the example above node "o" has children (outgoing connection to nodes)
// "c","(","g","y" and parents (incoming connections from nodes) "l","1","d".
//
// The objective of the search is to find the least cost path, where the cost
// is determined by the language model components and the properties of the
// cut between the blobs on the path. SegSearch starts by populating the
// matrix with the all the entries that were classified by the chopper and
// finding the initial best path. Based on the classifier ratings, language
// model scores and the properties of each cut, a list of "pain points" is
// constructed - those are the points on the path where the choices do not
// look consistent with the neighboring choices, the cuts look particularly
// problematic, or the certainties of the blobs are low. The most troublesome
// "pain point" is picked from the list and the new entry in the ratings
// matrix corresponding to this "pain point" is filled in. Then the language
// model state is updated to reflect the new classification and the new
// "pain points" are added to the list and the next most troublesome
// "pain point" is determined. This continues until either the word choice
// composed from the best paths in the segmentation graph is "good enough"
// (e.g. above a certain certainty threshold, is an unambiguous dictionary
// word, etc) or there are no more "pain points" to explore.
void SegSearch(CHUNKS_RECORD *chunks_record,
WERD_CHOICE *best_choice,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
WERD_CHOICE *raw_choice,
STATE *output_best_state);
// chop.cpp
PRIORITY point_priority(EDGEPT *point);
void add_point_to_list(POINT_GROUP point_list, EDGEPT *point);
int angle_change(EDGEPT *point1, EDGEPT *point2, EDGEPT *point3);
int is_little_chunk(EDGEPT *point1, EDGEPT *point2);
int is_small_area(EDGEPT *point1, EDGEPT *point2);
EDGEPT *pick_close_point(EDGEPT *critical_point,
EDGEPT *vertical_point,
int *best_dist);
void prioritize_points(TESSLINE *outline, POINT_GROUP points);
void new_min_point(EDGEPT *local_min, POINT_GROUP points);
void new_max_point(EDGEPT *local_max, POINT_GROUP points);
void vertical_projection_point(EDGEPT *split_point, EDGEPT *target_point,
EDGEPT** best_point);
// chopper.cpp
SEAM *attempt_blob_chop(TWERD *word, inT32 blob_number, bool italic_blob,
SEAMS seam_list);
bool improve_one_blob(TWERD *word,
BLOB_CHOICE_LIST_VECTOR *char_choices,
inT32 *blob_number,
SEAMS *seam_list,
DANGERR *fixpt,
bool split_next_to_fragment);
void modify_blob_choice(BLOB_CHOICE_LIST *answer,
int chop_index);
bool chop_one_blob(TWERD *word,
BLOB_CHOICE_LIST_VECTOR *char_choices,
inT32 *blob_number,
SEAMS *seam_list,
int *right_chop_index);
BLOB_CHOICE_LIST_VECTOR *chop_word_main(WERD_RES *word);
void improve_by_chopping(WERD_RES *word,
BLOB_CHOICE_LIST_VECTOR *char_choices,
STATE *best_state,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
DANGERR *fixpt,
bool *updated_best_choice);
MATRIX *word_associator(WERD_RES *word,
STATE *state,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
DANGERR *fixpt,
STATE *best_state);
inT16 select_blob_to_split(const BLOB_CHOICE_LIST_VECTOR &char_choices,
float rating_ceiling,
bool split_next_to_fragment);
// findseam.cpp
void junk_worst_seam(SEAM_QUEUE seams, SEAM *new_seam, float new_priority);
void choose_best_seam(SEAM_QUEUE seam_queue,
SEAM_PILE *seam_pile,
SPLIT *split,
PRIORITY priority,
SEAM **seam_result,
TBLOB *blob);
void combine_seam(SEAM_QUEUE seam_queue, SEAM_PILE seam_pile, SEAM *seam);
inT16 constrained_split(SPLIT *split, TBLOB *blob);
void delete_seam_pile(SEAM_PILE seam_pile);
SEAM *pick_good_seam(TBLOB *blob);
PRIORITY seam_priority(SEAM *seam, inT16 xmin, inT16 xmax);
void try_point_pairs (EDGEPT * points[MAX_NUM_POINTS],
inT16 num_points,
SEAM_QUEUE seam_queue,
SEAM_PILE * seam_pile, SEAM ** seam, TBLOB * blob);
void try_vertical_splits(EDGEPT * points[MAX_NUM_POINTS],
inT16 num_points,
SEAM_QUEUE seam_queue,
SEAM_PILE * seam_pile, SEAM ** seam, TBLOB * blob);
// gradechop.cpp
PRIORITY full_split_priority(SPLIT *split, inT16 xmin, inT16 xmax);
PRIORITY grade_center_of_blob(register BOUNDS_RECT rect);
PRIORITY grade_overlap(register BOUNDS_RECT rect);
PRIORITY grade_split_length(register SPLIT *split);
PRIORITY grade_sharpness(register SPLIT *split);
PRIORITY grade_width_change(register BOUNDS_RECT rect);
void set_outline_bounds(register EDGEPT *point1,
register EDGEPT *point2,
BOUNDS_RECT rect);
// outlines.cpp
int crosses_outline(EDGEPT *p0, EDGEPT *p1, EDGEPT *outline);
int is_crossed(TPOINT a0, TPOINT a1, TPOINT b0, TPOINT b1);
int is_same_edgept(EDGEPT *p1, EDGEPT *p2);
EDGEPT *near_point(EDGEPT *point, EDGEPT *line_pt_0, EDGEPT *line_pt_1);
void reverse_outline(EDGEPT *outline);
// pieces.cpp
virtual BLOB_CHOICE_LIST *classify_piece(TBLOB *pieces,
SEAMS seams,
inT16 start,
inT16 end);
BLOB_CHOICE_LIST *get_piece_rating(MATRIX *ratings,
TBLOB *blobs,
SEAMS seams,
inT16 start,
inT16 end);
BOUNDS_LIST record_blob_bounds(TBLOB *blobs);
MATRIX *record_piece_ratings(TBLOB *blobs);
// heuristic.cpp
WIDTH_RECORD* state_char_widths(WIDTH_RECORD *chunk_widths,
STATE *state,
int num_joints);
FLOAT32 get_width_variance(WIDTH_RECORD *wrec, float norm_height);
FLOAT32 get_gap_variance(WIDTH_RECORD *wrec, float norm_height);
FLOAT32 prioritize_state(CHUNKS_RECORD *chunks_record,
SEARCH_RECORD *the_search);
FLOAT32 width_priority(CHUNKS_RECORD *chunks_record,
STATE *state,
int num_joints);
FLOAT32 seamcut_priority(SEAMS seams,
STATE *state,
int num_joints);
FLOAT32 rating_priority(CHUNKS_RECORD *chunks_record,
STATE *state,
int num_joints);
// Member variables.
LanguageModel *language_model_;
PRIORITY pass2_ok_split;
int pass2_seg_states;
int num_joints;
int num_pushed;
int num_popped;
TALLY states_before_best;
TALLY best_certainties[2];
TALLY character_widths; /* Width histogram */
BlobMatchTable blob_match_table;
EVALUATION_ARRAY last_segmentation;
// Stores the best choice for the previous word in the paragraph.
// This variable is modified by PAGE_RES_IT when iterating over
// words to OCR on the page.
WERD_CHOICE *prev_word_best_choice_;
protected:
// Updates the language model state recorded for the child entries specified
// in pending[starting_col]. Enqueues the children of the updated entries
// into pending and proceedes to update (and remove from pending) all the
// remaining entries in pending[col] (col >= starting_col). Upon termination
// of this function all the pending[col] lists will be empty.
//
// The arguments:
//
// starting_col: index of the column in chunks_record->ratings from
// which the update should be started
//
// pending: list of entries listing chunks_record->ratings entries
// that should be updated
//
// pain_points: priority heap listing the pain points generated by
// the language model
//
// temp_pain_points: temporary storage for tentative pain points generated
// by the language model after a single call to LanguageModel::UpdateState()
// (the agrument is passed in rather than created before each
// LanguageModel::UpdateState() call to avoid dynamic memory re-allocation)
//
// best_choice_bundle: a collection of variables that should be updated
// if a new best choice is found
//
void UpdateSegSearchNodes(int starting_col,
SEG_SEARCH_PENDING_LIST *pending[],
BestPathByColumn *best_path_by_column[],
CHUNKS_RECORD *chunks_record,
HEAP *pain_points,
BestChoiceBundle *best_choice_bundle);
};
} // namespace tesseract
#endif // TESSERACT_WORDREC_WORDREC_H__