tesseract/ccstruct/blobs.cpp

675 lines
21 KiB
C++
Raw Normal View History

/* -*-C-*-
********************************************************************************
*
* File: blobs.c (Formerly blobs.c)
* Description: Blob definition
* Author: Mark Seaman, OCR Technology
* Created: Fri Oct 27 15:39:52 1989
* Modified: Thu Mar 28 15:33:26 1991 (Mark Seaman) marks@hpgrlt
* Language: C
* Package: N/A
* Status: Experimental (Do Not Distribute)
*
* (c) Copyright 1989, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
*********************************************************************************/
/*----------------------------------------------------------------------
I n c l u d e s
----------------------------------------------------------------------*/
#include "mfcpch.h"
#include "blobs.h"
#include "ccstruct.h"
#include "clst.h"
#include "cutil.h"
#include "emalloc.h"
#include "helpers.h"
#include "ndminx.h"
#include "normalis.h"
#include "ocrblock.h"
#include "ocrrow.h"
#include "points.h"
#include "polyaprx.h"
#include "structures.h"
#include "werd.h"
using tesseract::CCStruct;
// A Vector representing the "vertical" direction when measuring the
// divisiblity of blobs into multiple blobs just by separating outlines.
// See divisible_blob below for the use.
const TPOINT kDivisibleVerticalUpright(0, 1);
// A vector representing the "vertical" direction for italic text for use
// when separating outlines. Using it actually deteriorates final accuracy,
// so it is only used for ApplyBoxes chopping to get a better segmentation.
const TPOINT kDivisibleVerticalItalic(1, 5);
/*----------------------------------------------------------------------
F u n c t i o n s
----------------------------------------------------------------------*/
CLISTIZE(EDGEPT);
// Consume the circular list of EDGEPTs to make a TESSLINE.
TESSLINE* TESSLINE::BuildFromOutlineList(EDGEPT* outline) {
TESSLINE* result = new TESSLINE;
result->loop = outline;
result->SetupFromPos();
return result;
}
// Copies the data and the outline, but leaves next untouched.
void TESSLINE::CopyFrom(const TESSLINE& src) {
Clear();
topleft = src.topleft;
botright = src.botright;
start = src.start;
is_hole = src.is_hole;
if (src.loop != NULL) {
EDGEPT* prevpt = NULL;
EDGEPT* newpt = NULL;
EDGEPT* srcpt = src.loop;
do {
newpt = new EDGEPT(*srcpt);
if (prevpt == NULL) {
loop = newpt;
} else {
newpt->prev = prevpt;
prevpt->next = newpt;
}
prevpt = newpt;
srcpt = srcpt->next;
} while (srcpt != src.loop);
loop->prev = newpt;
newpt->next = loop;
}
}
// Deletes owned data.
void TESSLINE::Clear() {
if (loop == NULL)
return;
EDGEPT* this_edge = loop;
do {
EDGEPT* next_edge = this_edge->next;
delete this_edge;
this_edge = next_edge;
} while (this_edge != loop);
loop = NULL;
}
// Normalize in-place using the DENORM.
void TESSLINE::Normalize(const DENORM& denorm) {
EDGEPT* pt = loop;
do {
denorm.LocalNormTransform(pt->pos, &pt->pos);
pt = pt->next;
} while (pt != loop);
SetupFromPos();
}
// Rotates by the given rotation in place.
void TESSLINE::Rotate(const FCOORD rot) {
EDGEPT* pt = loop;
do {
int tmp = static_cast<int>(floor(pt->pos.x * rot.x() -
pt->pos.y * rot.y() + 0.5));
pt->pos.y = static_cast<int>(floor(pt->pos.y * rot.x() +
pt->pos.x * rot.y() + 0.5));
pt->pos.x = tmp;
pt = pt->next;
} while (pt != loop);
SetupFromPos();
}
// Moves by the given vec in place.
void TESSLINE::Move(const ICOORD vec) {
EDGEPT* pt = loop;
do {
pt->pos.x += vec.x();
pt->pos.y += vec.y();
pt = pt->next;
} while (pt != loop);
SetupFromPos();
}
// Scales by the given factor in place.
void TESSLINE::Scale(float factor) {
EDGEPT* pt = loop;
do {
pt->pos.x = static_cast<int>(floor(pt->pos.x * factor + 0.5));
pt->pos.y = static_cast<int>(floor(pt->pos.y * factor + 0.5));
pt = pt->next;
} while (pt != loop);
SetupFromPos();
}
// Sets up the start and vec members of the loop from the pos members.
void TESSLINE::SetupFromPos() {
EDGEPT* pt = loop;
do {
pt->vec.x = pt->next->pos.x - pt->pos.x;
pt->vec.y = pt->next->pos.y - pt->pos.y;
pt = pt->next;
} while (pt != loop);
start = pt->pos;
ComputeBoundingBox();
}
// Recomputes the bounding box from the points in the loop.
void TESSLINE::ComputeBoundingBox() {
int minx = MAX_INT32;
int miny = MAX_INT32;
int maxx = -MAX_INT32;
int maxy = -MAX_INT32;
// Find boundaries.
start = loop->pos;
EDGEPT* this_edge = loop;
do {
if (!this_edge->IsHidden() || !this_edge->prev->IsHidden()) {
if (this_edge->pos.x < minx)
minx = this_edge->pos.x;
if (this_edge->pos.y < miny)
miny = this_edge->pos.y;
if (this_edge->pos.x > maxx)
maxx = this_edge->pos.x;
if (this_edge->pos.y > maxy)
maxy = this_edge->pos.y;
}
this_edge = this_edge->next;
} while (this_edge != loop);
// Reset bounds.
topleft.x = minx;
topleft.y = maxy;
botright.x = maxx;
botright.y = miny;
}
// Computes the min and max cross product of the outline points with the
// given vec and returns the results in min_xp and max_xp. Geometrically
// this is the left and right edge of the outline perpendicular to the
// given direction, but to get the distance units correct, you would
// have to divide by the modulus of vec.
void TESSLINE::MinMaxCrossProduct(const TPOINT vec,
int* min_xp, int* max_xp) const {
*min_xp = MAX_INT32;
*max_xp = MIN_INT32;
EDGEPT* this_edge = loop;
do {
if (!this_edge->IsHidden() || !this_edge->prev->IsHidden()) {
int product = CROSS(this_edge->pos, vec);
UpdateRange(product, min_xp, max_xp);
}
this_edge = this_edge->next;
} while (this_edge != loop);
}
TBOX TESSLINE::bounding_box() const {
return TBOX(topleft.x, botright.y, botright.x, topleft.y);
}
void TESSLINE::plot(ScrollView* window, ScrollView::Color color,
ScrollView::Color child_color) {
#ifndef GRAPHICS_DISABLED
if (is_hole)
window->Pen(child_color);
else
window->Pen(color);
window->SetCursor(start.x, start.y);
EDGEPT* pt = loop;
do {
bool prev_hidden = pt->IsHidden();
pt = pt->next;
if (prev_hidden)
window->SetCursor(pt->pos.x, pt->pos.y);
else
window->DrawTo(pt->pos.x, pt->pos.y);
} while (pt != loop);
#endif // GRAPHICS_DISABLED
}
// Iterate the given list of outlines, converting to TESSLINE by polygonal
// approximation and recursively any children, returning the current tail
// of the resulting list of TESSLINEs.
static TESSLINE** ApproximateOutlineList(C_OUTLINE_LIST* outlines,
bool children,
TESSLINE** tail) {
C_OUTLINE_IT ol_it(outlines);
for (ol_it.mark_cycle_pt(); !ol_it.cycled_list(); ol_it.forward()) {
C_OUTLINE* outline = ol_it.data();
TESSLINE* tessline = ApproximateOutline(outline);
tessline->is_hole = children;
*tail = tessline;
tail = &tessline->next;
if (!outline->child()->empty()) {
tail = ApproximateOutlineList(outline->child(), true, tail);
}
}
return tail;
}
// Factory to build a TBLOB from a C_BLOB with polygonal
// approximation along the way.
TBLOB* TBLOB::PolygonalCopy(C_BLOB* src) {
C_OUTLINE_IT ol_it = src->out_list();
TBLOB* tblob = new TBLOB;
ApproximateOutlineList(src->out_list(), false, &tblob->outlines);
return tblob;
}
// Normalizes the blob for classification only if needed.
// (Normally this means a non-zero classify rotation.)
// If no Normalization is needed, then NULL is returned, and the denorm is
// unchanged. Otherwise a new TBLOB is returned and the denorm points to
// a new DENORM. In this case, both the TBLOB and DENORM must be deleted.
TBLOB* TBLOB::ClassifyNormalizeIfNeeded(const DENORM** denorm) const {
TBLOB* rotated_blob = NULL;
// If necessary, copy the blob and rotate it. The rotation is always
// +/- 90 degrees, as 180 was already taken care of.
if ((*denorm)->block() != NULL &&
(*denorm)->block()->classify_rotation().y() != 0.0) {
TBOX box = bounding_box();
int x_middle = (box.left() + box.right()) / 2;
int y_middle = (box.top() + box.bottom()) / 2;
rotated_blob = new TBLOB(*this);
const FCOORD& rotation = (*denorm)->block()->classify_rotation();
DENORM* norm = new DENORM;
// Move the rotated blob back to the same y-position so that we
// can still distinguish similar glyphs with differeny y-position.
float target_y = kBlnBaselineOffset +
(rotation.y() > 0 ? x_middle - box.left() : box.right() - x_middle);
norm->SetupNormalization(NULL, NULL, &rotation, *denorm, NULL, 0,
x_middle, y_middle, 1.0f, 1.0f, 0.0f, target_y);
// x_middle, y_middle, 1.0f, 1.0f, 0.0f, y_middle);
rotated_blob->Normalize(*norm);
*denorm = norm;
}
return rotated_blob;
}
// Copies the data and the outline, but leaves next untouched.
void TBLOB::CopyFrom(const TBLOB& src) {
Clear();
TESSLINE* prev_outline = NULL;
for (TESSLINE* srcline = src.outlines; srcline != NULL;
srcline = srcline->next) {
TESSLINE* new_outline = new TESSLINE(*srcline);
if (outlines == NULL)
outlines = new_outline;
else
prev_outline->next = new_outline;
prev_outline = new_outline;
}
}
// Deletes owned data.
void TBLOB::Clear() {
for (TESSLINE* next_outline = NULL; outlines != NULL;
outlines = next_outline) {
next_outline = outlines->next;
delete outlines;
}
}
// Normalize in-place using the DENORM.
void TBLOB::Normalize(const DENORM& denorm) {
// TODO(rays) outline->Normalize is more accurate, but breaks tests due
// the changes it makes. Reinstate this code with a retraining.
#if 1
for (TESSLINE* outline = outlines; outline != NULL; outline = outline->next) {
outline->Normalize(denorm);
}
#else
denorm.LocalNormBlob(this);
#endif
}
// Rotates by the given rotation in place.
void TBLOB::Rotate(const FCOORD rotation) {
for (TESSLINE* outline = outlines; outline != NULL; outline = outline->next) {
outline->Rotate(rotation);
}
}
// Moves by the given vec in place.
void TBLOB::Move(const ICOORD vec) {
for (TESSLINE* outline = outlines; outline != NULL; outline = outline->next) {
outline->Move(vec);
}
}
// Scales by the given factor in place.
void TBLOB::Scale(float factor) {
for (TESSLINE* outline = outlines; outline != NULL; outline = outline->next) {
outline->Scale(factor);
}
}
// Recomputes the bounding boxes of the outlines.
void TBLOB::ComputeBoundingBoxes() {
for (TESSLINE* outline = outlines; outline != NULL; outline = outline->next) {
outline->ComputeBoundingBox();
}
}
// Returns the number of outlines.
int TBLOB::NumOutlines() const {
int result = 0;
for (TESSLINE* outline = outlines; outline != NULL; outline = outline->next)
++result;
return result;
}
/**********************************************************************
* TBLOB::bounding_box()
*
* Compute the bounding_box of a compound blob, defined to be the
* bounding box of the union of all top-level outlines in the blob.
**********************************************************************/
TBOX TBLOB::bounding_box() const {
if (outlines == NULL)
return TBOX(0, 0, 0, 0);
TESSLINE *outline = outlines;
TBOX box = outline->bounding_box();
for (outline = outline->next; outline != NULL; outline = outline->next) {
box += outline->bounding_box();
}
return box;
}
void TBLOB::plot(ScrollView* window, ScrollView::Color color,
ScrollView::Color child_color) {
for (TESSLINE* outline = outlines; outline != NULL; outline = outline->next)
outline->plot(window, color, child_color);
}
// Factory to build a TWERD from a (C_BLOB) WERD, with polygonal
// approximation along the way.
TWERD* TWERD::PolygonalCopy(WERD* src) {
TWERD* tessword = new TWERD;
tessword->latin_script = src->flag(W_SCRIPT_IS_LATIN);
C_BLOB_IT b_it(src->cblob_list());
TBLOB *tail = NULL;
for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
C_BLOB* blob = b_it.data();
TBLOB* tblob = TBLOB::PolygonalCopy(blob);
if (tail == NULL) {
tessword->blobs = tblob;
} else {
tail->next = tblob;
}
tail = tblob;
}
return tessword;
}
// Normalize in-place and record the normalization in the DENORM.
void TWERD::SetupBLNormalize(const BLOCK* block, const ROW* row,
float x_height, bool numeric_mode,
DENORM* denorm) const {
int num_segments = 0;
DENORM_SEG* segs = NULL;
if (numeric_mode) {
segs = new DENORM_SEG[NumBlobs()];
for (TBLOB* blob = blobs; blob != NULL; blob = blob->next) {
TBOX blob_box = blob->bounding_box();
float factor = kBlnXHeight / x_height;
factor = ClipToRange(kBlnXHeight * 4.0f / (3 * blob_box.height()),
factor, factor * 1.5f);
segs[num_segments].xstart = blob_box.left();
segs[num_segments].ycoord = blob_box.bottom();
segs[num_segments++].scale_factor = factor;
}
}
denorm->SetupBLNormalize(block, row, x_height, bounding_box(),
num_segments, segs);
delete [] segs;
}
// Normalize in-place using the DENORM.
void TWERD::Normalize(const DENORM& denorm) {
for (TBLOB* blob = blobs; blob != NULL; blob = blob->next) {
blob->Normalize(denorm);
}
}
// Copies the data and the blobs, but leaves next untouched.
void TWERD::CopyFrom(const TWERD& src) {
Clear();
latin_script = src.latin_script;
TBLOB* prev_blob = NULL;
for (TBLOB* srcblob = src.blobs; srcblob != NULL; srcblob = srcblob->next) {
TBLOB* new_blob = new TBLOB(*srcblob);
if (blobs == NULL)
blobs = new_blob;
else
prev_blob->next = new_blob;
prev_blob = new_blob;
}
}
// Deletes owned data.
void TWERD::Clear() {
for (TBLOB* next_blob = NULL; blobs != NULL; blobs = next_blob) {
next_blob = blobs->next;
delete blobs;
}
}
// Recomputes the bounding boxes of the blobs.
void TWERD::ComputeBoundingBoxes() {
for (TBLOB* blob = blobs; blob != NULL; blob = blob->next) {
blob->ComputeBoundingBoxes();
}
}
TBOX TWERD::bounding_box() const {
TBOX result;
for (TBLOB* blob = blobs; blob != NULL; blob = blob->next) {
TBOX box = blob->bounding_box();
result += box;
}
return result;
}
// Merges the blobs from start to end, not including end, and deletes
// the blobs between start and end.
void TWERD::MergeBlobs(int start, int end) {
TBLOB* blob = blobs;
for (int i = 0; i < start && blob != NULL; ++i)
blob = blob->next;
if (blob == NULL || blob->next == NULL)
return;
TBLOB* next_blob = blob->next;
TESSLINE* outline = blob->outlines;
for (int i = start + 1; i < end && next_blob != NULL; ++i) {
// Take the outlines from the next blob.
if (outline == NULL) {
blob->outlines = next_blob->outlines;
outline = blob->outlines;
} else {
while (outline->next != NULL)
outline = outline->next;
outline->next = next_blob->outlines;
next_blob->outlines = NULL;
}
// Delete the next blob and move on.
TBLOB* dead_blob = next_blob;
next_blob = next_blob->next;
blob->next = next_blob;
delete dead_blob;
}
}
void TWERD::plot(ScrollView* window) {
ScrollView::Color color = WERD::NextColor(ScrollView::BLACK);
for (TBLOB* blob = blobs; blob != NULL; blob = blob->next) {
blob->plot(window, color, ScrollView::BROWN);
color = WERD::NextColor(color);
}
}
/**********************************************************************
* blob_origin
*
* Compute the origin of a compound blob, define to be the centre
* of the bounding box.
**********************************************************************/
void blob_origin(TBLOB *blob, /*blob to compute on */
TPOINT *origin) { /*return value */
TBOX bbox = blob->bounding_box();
*origin = (bbox.topleft() + bbox.botright()) / 2;
}
/**********************************************************************
* blobs_widths
*
* Compute the widths of a list of blobs. Return an array of the widths
* and gaps.
**********************************************************************/
WIDTH_RECORD *blobs_widths(TBLOB *blobs) { /*blob to compute on */
WIDTH_RECORD *width_record;
TPOINT topleft; /*bounding box */
TPOINT botright;
int i = 0;
int blob_end;
int num_blobs = count_blobs (blobs);
/* Get memory */
width_record = (WIDTH_RECORD *) memalloc (sizeof (int) * num_blobs * 2);
width_record->num_chars = num_blobs;
TBOX bbox = blobs->bounding_box();
width_record->widths[i++] = bbox.width();
/* First width */
blob_end = bbox.right();
for (TBLOB* blob = blobs->next; blob != NULL; blob = blob->next) {
TBOX curbox = blob->bounding_box();
width_record->widths[i++] = curbox.left() - blob_end;
width_record->widths[i++] = curbox.width();
blob_end = curbox.right();
}
return width_record;
}
/**********************************************************************
* count_blobs
*
* Return a count of the number of blobs attached to this one.
**********************************************************************/
int count_blobs(TBLOB *blobs) {
int x = 0;
for (TBLOB* b = blobs; b != NULL; b = b->next)
x++;
return x;
}
/**********************************************************************
* divisible_blob
*
* Returns true if the blob contains multiple outlines than can be
* separated using divide_blobs. Sets the location to be used in the
* call to divide_blobs.
**********************************************************************/
bool divisible_blob(TBLOB *blob, bool italic_blob, TPOINT* location) {
if (blob->outlines == NULL || blob->outlines->next == NULL)
return false; // Need at least 2 outlines for it to be possible.
int max_gap = 0;
TPOINT vertical = italic_blob ? kDivisibleVerticalItalic
: kDivisibleVerticalUpright;
for (TESSLINE* outline1 = blob->outlines; outline1 != NULL;
outline1 = outline1->next) {
if (outline1->is_hole)
continue; // Holes do not count as separable.
TPOINT mid_pt1(
static_cast<inT16>((outline1->topleft.x + outline1->botright.x) / 2),
static_cast<inT16>((outline1->topleft.y + outline1->botright.y) / 2));
int mid_prod1 = CROSS(mid_pt1, vertical);
int min_prod1, max_prod1;
outline1->MinMaxCrossProduct(vertical, &min_prod1, &max_prod1);
for (TESSLINE* outline2 = outline1->next; outline2 != NULL;
outline2 = outline2->next) {
if (outline2->is_hole)
continue; // Holes do not count as separable.
TPOINT mid_pt2(
static_cast<inT16>((outline2->topleft.x + outline2->botright.x) / 2),
static_cast<inT16>((outline2->topleft.y + outline2->botright.y) / 2));
int mid_prod2 = CROSS(mid_pt2, vertical);
int min_prod2, max_prod2;
outline2->MinMaxCrossProduct(vertical, &min_prod2, &max_prod2);
int mid_gap = abs(mid_prod2 - mid_prod1);
int overlap = MIN(max_prod1, max_prod2) - MAX(min_prod1, min_prod2);
if (mid_gap - overlap / 4 > max_gap) {
max_gap = mid_gap - overlap / 4;
*location = mid_pt1;
*location += mid_pt2;
*location /= 2;
}
}
}
// Use the y component of the vertical vector as an approximation to its
// length.
return max_gap > vertical.y;
}
/**********************************************************************
* divide_blobs
*
* Create two blobs by grouping the outlines in the appropriate blob.
* The outlines that are beyond the location point are moved to the
* other blob. The ones whose x location is less than that point are
* retained in the original blob.
**********************************************************************/
void divide_blobs(TBLOB *blob, TBLOB *other_blob, bool italic_blob,
const TPOINT& location) {
TPOINT vertical = italic_blob ? kDivisibleVerticalItalic
: kDivisibleVerticalUpright;
TESSLINE *outline1 = NULL;
TESSLINE *outline2 = NULL;
TESSLINE *outline = blob->outlines;
blob->outlines = NULL;
int location_prod = CROSS(location, vertical);
while (outline != NULL) {
TPOINT mid_pt(
static_cast<inT16>((outline->topleft.x + outline->botright.x) / 2),
static_cast<inT16>((outline->topleft.y + outline->botright.y) / 2));
int mid_prod = CROSS(mid_pt, vertical);
if (mid_prod < location_prod) {
// Outline is in left blob.
if (outline1)
outline1->next = outline;
else
blob->outlines = outline;
outline1 = outline;
} else {
// Outline is in right blob.
if (outline2)
outline2->next = outline;
else
other_blob->outlines = outline;
outline2 = outline;
}
outline = outline->next;
}
if (outline1)
outline1->next = NULL;
if (outline2)
outline2->next = NULL;
}