tesseract/src/lstm/fullyconnected.h

132 lines
5.6 KiB
C
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// File: fullyconnected.h
// Description: Simple feed-forward layer with various non-linearities.
// Author: Ray Smith
//
// (C) Copyright 2014, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_LSTM_FULLYCONNECTED_H_
#define TESSERACT_LSTM_FULLYCONNECTED_H_
#include "network.h"
#include "networkscratch.h"
namespace tesseract {
// C++ Implementation of the Softmax (output) class from lstm.py.
class FullyConnected : public Network {
public:
TESS_API
FullyConnected(const std::string &name, int ni, int no, NetworkType type);
~FullyConnected() override = default;
// Returns the shape output from the network given an input shape (which may
// be partially unknown ie zero).
StaticShape OutputShape(const StaticShape &input_shape) const override;
std::string spec() const override {
std::string spec;
if (type_ == NT_TANH) {
spec += "Ft" + std::to_string(no_);
} else if (type_ == NT_LOGISTIC) {
spec += "Fs" + std::to_string(no_);
} else if (type_ == NT_RELU) {
spec += "Fr" + std::to_string(no_);
} else if (type_ == NT_LINEAR) {
spec += "Fl" + std::to_string(no_);
} else if (type_ == NT_POSCLIP) {
spec += "Fp" + std::to_string(no_);
} else if (type_ == NT_SYMCLIP) {
spec += "Fn" + std::to_string(no_);
} else if (type_ == NT_SOFTMAX) {
spec += "Fc" + std::to_string(no_);
} else {
spec += "Fm" + std::to_string(no_);
}
return spec;
}
// Changes the type to the given type. Used to commute a softmax to a
// non-output type for adding on other networks.
void ChangeType(NetworkType type) {
type_ = type;
}
// Suspends/Enables training by setting the training_ flag. Serialize and
// DeSerialize only operate on the run-time data if state is false.
2018-04-28 03:07:20 +08:00
void SetEnableTraining(TrainingState state) override;
// Sets up the network for training. Initializes weights using weights of
// scale `range` picked according to the random number generator `randomizer`.
int InitWeights(float range, TRand *randomizer) override;
2017-09-08 17:24:00 +08:00
// Recursively searches the network for softmaxes with old_no outputs,
// and remaps their outputs according to code_map. See network.h for details.
int RemapOutputs(int old_no, const std::vector<int> &code_map) override;
// Converts a float network to an int network.
2018-04-28 03:07:20 +08:00
void ConvertToInt() override;
// Provides debug output on the weights.
2018-04-28 03:07:20 +08:00
void DebugWeights() override;
// Writes to the given file. Returns false in case of error.
bool Serialize(TFile *fp) const override;
// Reads from the given file. Returns false in case of error.
bool DeSerialize(TFile *fp) override;
// Runs forward propagation of activations on the input line.
// See Network for a detailed discussion of the arguments.
void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose,
NetworkScratch *scratch, NetworkIO *output) override;
// Components of Forward so FullyConnected can be reused inside LSTM.
void SetupForward(const NetworkIO &input, const TransposedArray *input_transpose);
void ForwardTimeStep(int t, double *output_line);
void ForwardTimeStep(const double *d_input, int t, double *output_line);
void ForwardTimeStep(const int8_t *i_input, int t, double *output_line);
// Runs backward propagation of errors on the deltas line.
// See Network for a detailed discussion of the arguments.
bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch,
NetworkIO *back_deltas) override;
// Components of Backward so FullyConnected can be reused inside LSTM.
void BackwardTimeStep(const NetworkIO &fwd_deltas, int t, double *curr_errors,
TransposedArray *errors_t, double *backprop);
void FinishBackward(const TransposedArray &errors_t);
// Updates the weights using the given learning rate, momentum and adam_beta.
// num_samples is used in the adam computation iff use_adam_ is true.
void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override;
// Sums the products of weight updates in *this and other, splitting into
// positive (same direction) in *same and negative (different direction) in
// *changed.
void CountAlternators(const Network &other, double *same, double *changed) const override;
protected:
// Weight arrays of size [no, ni + 1].
WeightMatrix weights_;
// Transposed copy of input used during training of size [ni, width].
TransposedArray source_t_;
// Pointer to transposed input stored elsewhere. If not null, this is used
// in preference to calculating the transpose and storing it in source_t_.
const TransposedArray *external_source_;
// Activations from forward pass of size [width, no].
NetworkIO acts_;
// Memory of the integer mode input to forward as softmax always outputs
// float, so the information is otherwise lost.
bool int_mode_;
};
} // namespace tesseract.
#endif // TESSERACT_LSTM_FULLYCONNECTED_H_