tesseract/ccstruct/quadlsq.cpp

144 lines
4.6 KiB
C++
Raw Normal View History

/**********************************************************************
* File: quadlsq.cpp (Formerly qlsq.c)
* Description: Code for least squares approximation of quadratics.
* Author: Ray Smith
* Created: Wed Oct 6 15:14:23 BST 1993
*
* (C) Copyright 1993, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include <stdio.h>
#include <math.h>
#include "quadlsq.h"
#include "tprintf.h"
// Minimum variance in least squares before backing off to a lower degree.
const double kMinVariance = 1.0 / 1024;
/**********************************************************************
* QLSQ::clear
*
* Function to initialize a QLSQ.
**********************************************************************/
void QLSQ::clear() { // initialize
a = 0.0;
b = 0.0;
c = 0.0;
n = 0; // No elements.
sigx = 0.0; // Zero accumulators.
sigy = 0.0;
sigxx = 0.0;
sigxy = 0.0;
sigyy = 0.0;
sigxxx = 0.0;
sigxxy = 0.0;
sigxxxx = 0.0;
}
/**********************************************************************
* QLSQ::add
*
* Add an element to the accumulator.
**********************************************************************/
void QLSQ::add(double x, double y) {
n++; // Count elements.
sigx += x; // Update accumulators.
sigy += y;
sigxx += x * x;
sigxy += x * y;
sigyy += y * y;
sigxxx += static_cast<long double>(x) * x * x;
sigxxy += static_cast<long double>(x) * x * y;
sigxxxx += static_cast<long double>(x) * x * x * x;
}
/**********************************************************************
* QLSQ::remove
*
* Delete an element from the accumulator.
**********************************************************************/
void QLSQ::remove(double x, double y) {
if (n <= 0) {
tprintf("Can't remove an element from an empty QLSQ accumulator!\n");
return;
}
n--; // Count elements.
sigx -= x; // Update accumulators.
sigy -= y;
sigxx -= x * x;
sigxy -= x * y;
sigyy -= y * y;
sigxxx -= static_cast<long double>(x) * x * x;
sigxxy -= static_cast<long double>(x) * x * y;
sigxxxx -= static_cast<long double>(x) * x * x * x;
}
/**********************************************************************
* QLSQ::fit
*
* Fit the given degree of polynomial and store the result.
* This creates a quadratic of the form axx + bx + c, but limited to
* the given degree.
**********************************************************************/
void QLSQ::fit(int degree) {
long double x_variance = static_cast<long double>(sigxx) * n -
static_cast<long double>(sigx) * sigx;
// Note: for computational efficiency, we do not normalize the variance,
// covariance and cube variance here as they are in the same order in both
// nominators and denominators. However, we need be careful in value range
// check.
if (x_variance < kMinVariance * n * n || degree < 1 || n < 2) {
// We cannot calculate b reliably so forget a and b, and just work on c.
a = b = 0.0;
if (n >= 1 && degree >= 0) {
c = sigy / n;
} else {
c = 0.0;
}
return;
}
long double top96 = 0.0; // Accurate top.
long double bottom96 = 0.0; // Accurate bottom.
long double cubevar = sigxxx * n - static_cast<long double>(sigxx) * sigx;
long double covariance = static_cast<long double>(sigxy) * n -
static_cast<long double>(sigx) * sigy;
if (n >= 4 && degree >= 2) {
top96 = cubevar * covariance;
top96 += x_variance * (static_cast<long double>(sigxx) * sigy - sigxxy * n);
bottom96 = cubevar * cubevar;
bottom96 -= x_variance *
(sigxxxx * n - static_cast<long double>(sigxx) * sigxx);
}
if (bottom96 >= kMinVariance * n * n * n * n) {
// Denominators looking good
a = top96 / bottom96;
top96 = covariance - cubevar * a;
b = top96 / x_variance;
} else {
// Forget a, and concentrate on b.
a = 0.0;
b = covariance / x_variance;
}
c = (sigy - a * sigxx - b * sigx) / n;
}