tesseract/wordrec/wordrec.cpp

200 lines
8.2 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// File: wordrec.cpp
// Description: wordrec class.
// Author: Samuel Charron
//
// (C) Copyright 2006, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "wordrec.h"
#include "language_model.h"
#include "params.h"
namespace tesseract {
Wordrec::Wordrec() :
// control parameters
BOOL_MEMBER(merge_fragments_in_matrix, TRUE,
"Merge the fragments in the ratings matrix and delete them"
" after merging", params()),
BOOL_MEMBER(wordrec_no_block, FALSE, "Don't output block information",
params()),
BOOL_MEMBER(wordrec_enable_assoc, TRUE, "Associator Enable",
params()),
BOOL_MEMBER(force_word_assoc, FALSE,
"force associator to run regardless of what enable_assoc is."
"This is used for CJK where component grouping is necessary.",
CCUtil::params()),
INT_MEMBER(wordrec_num_seg_states, 30, "Segmentation states",
CCUtil::params()),
double_MEMBER(wordrec_worst_state, 1.0, "Worst segmentation state",
params()),
BOOL_MEMBER(fragments_guide_chopper, FALSE,
"Use information from fragments to guide chopping process",
params()),
INT_MEMBER(repair_unchopped_blobs, 1, "Fix blobs that aren't chopped",
params()),
double_MEMBER(tessedit_certainty_threshold, -2.25, "Good blob limit",
params()),
INT_MEMBER(chop_debug, 0, "Chop debug",
params()),
BOOL_MEMBER(chop_enable, 1, "Chop enable",
params()),
BOOL_MEMBER(chop_vertical_creep, 0, "Vertical creep",
params()),
INT_MEMBER(chop_split_length, 10000, "Split Length",
params()),
INT_MEMBER(chop_same_distance, 2, "Same distance",
params()),
INT_MEMBER(chop_min_outline_points, 6, "Min Number of Points on Outline",
params()),
INT_MEMBER(chop_inside_angle, -50, "Min Inside Angle Bend",
params()),
INT_MEMBER(chop_min_outline_area, 2000, "Min Outline Area",
params()),
double_MEMBER(chop_split_dist_knob, 0.5, "Split length adjustment",
params()),
double_MEMBER(chop_overlap_knob, 0.9, "Split overlap adjustment",
params()),
double_MEMBER(chop_center_knob, 0.15, "Split center adjustment",
params()),
double_MEMBER(chop_sharpness_knob, 0.06, "Split sharpness adjustment",
params()),
double_MEMBER(chop_width_change_knob, 5.0, "Width change adjustment",
params()),
double_MEMBER(chop_ok_split, 100.0, "OK split limit",
params()),
double_MEMBER(chop_good_split, 50.0, "Good split limit",
params()),
INT_MEMBER(chop_x_y_weight, 3, "X / Y length weight",
params()),
INT_MEMBER(segment_adjust_debug, 0, "Segmentation adjustment debug",
params()),
BOOL_MEMBER(assume_fixed_pitch_char_segment, FALSE,
"include fixed-pitch heuristics in char segmentation",
params()),
BOOL_MEMBER(use_new_state_cost, FALSE,
"use new state cost heuristics for segmentation state evaluation",
params()),
double_MEMBER(heuristic_segcost_rating_base, 1.25,
"base factor for adding segmentation cost into word rating."
"It's a multiplying factor, the larger the value above 1, "
"the bigger the effect of segmentation cost.",
params()),
double_MEMBER(heuristic_weight_rating, 1.0,
"weight associated with char rating in combined cost of state",
params()),
double_MEMBER(heuristic_weight_width, 1000.0,
"weight associated with width evidence in combined cost of"
" state", params()),
double_MEMBER(heuristic_weight_seamcut, 0.0,
"weight associated with seam cut in combined cost of state",
params()),
double_MEMBER(heuristic_max_char_wh_ratio, 2.0,
"max char width-to-height ratio allowed in segmentation",
params()),
INT_MEMBER(wordrec_debug_level, 0,
"Debug level for wordrec", params()),
BOOL_MEMBER(wordrec_debug_blamer, false,
"Print blamer debug messages", params()),
BOOL_MEMBER(wordrec_run_blamer, false,
"Try to set the blame for errors", params()),
BOOL_MEMBER(enable_new_segsearch, true,
"Enable new segmentation search path.", params()),
INT_MEMBER(segsearch_debug_level, 0,
"SegSearch debug level", params()),
INT_MEMBER(segsearch_max_pain_points, 2000,
"Maximum number of pain points stored in the queue",
params()),
INT_MEMBER(segsearch_max_futile_classifications, 10,
"Maximum number of pain point classifications per word that"
"did not result in finding a better word choice.",
params()),
double_MEMBER(segsearch_max_char_wh_ratio, 2.0,
"Maximum character width-to-height ratio", params()),
double_MEMBER(segsearch_max_fixed_pitch_char_wh_ratio, 2.0,
"Maximum character width-to-height ratio for"
" fixed-pitch fonts",
params()),
BOOL_MEMBER(save_alt_choices, false,
"Save alternative paths found during chopping"
" and segmentation search",
params()) {
prev_word_best_choice_ = NULL;
language_model_ = new LanguageModel(&get_fontinfo_table(),
&(getDict()));
pass2_seg_states = 0;
num_joints = 0;
num_pushed = 0;
num_popped = 0;
fill_lattice_ = NULL;
}
Wordrec::~Wordrec() {
delete language_model_;
}
void Wordrec::CopyCharChoices(const BLOB_CHOICE_LIST_VECTOR &from,
BLOB_CHOICE_LIST_VECTOR *to) {
to->delete_data_pointers();
to->clear();
for (int i = 0; i < from.size(); ++i) {
BLOB_CHOICE_LIST *cc_list = new BLOB_CHOICE_LIST();
cc_list->deep_copy(from[i], &BLOB_CHOICE::deep_copy);
to->push_back(cc_list);
}
}
bool Wordrec::ChoiceIsCorrect(const UNICHARSET &uni_set,
const WERD_CHOICE *choice,
const GenericVector<STRING> &truth_text) {
if (choice == NULL) return false;
int i;
STRING truth_str;
for (i = 0; i < truth_text.length(); ++i) truth_str += truth_text[i];
STRING normed_choice_str;
for (i = 0; i < choice->length(); ++i) {
normed_choice_str += uni_set.get_normed_unichar(choice->unichar_id(i));
}
return (truth_str == normed_choice_str);
}
void Wordrec::SaveAltChoices(const LIST &best_choices, WERD_RES *word) {
ASSERT_HOST(word->alt_choices.empty());
ASSERT_HOST(word->alt_states.empty());
LIST list_it;
iterate_list(list_it, best_choices) {
VIABLE_CHOICE choice =
reinterpret_cast<VIABLE_CHOICE>(first_node(list_it));
CHAR_CHOICE *char_choice = &(choice->Blob[0]);
WERD_CHOICE *alt_choice = new WERD_CHOICE(word->uch_set, choice->Length);
word->alt_states.push_back(GenericVector<int>(choice->Length));
GenericVector<int> &alt_state = word->alt_states.back();
for (int i = 0; i < choice->Length; char_choice++, i++) {
alt_choice->append_unichar_id_space_allocated(
char_choice->Class, 1, 0, 0);
alt_state.push_back(char_choice->NumChunks);
}
alt_choice->set_rating(choice->Rating);
alt_choice->set_certainty(choice->Certainty);
word->alt_choices.push_back(alt_choice);
if (wordrec_debug_level > 0) {
tprintf("SaveAltChoices: %s %g\n",
alt_choice->unichar_string().string(), alt_choice->rating());
}
}
}
} // namespace tesseract