tesseract/classify/classify.h

231 lines
9.6 KiB
C
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// File: classify.h
// Description: classify class.
// Author: Samuel Charron
//
// (C) Copyright 2006, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_CLASSIFY_CLASSIFY_H__
#define TESSERACT_CLASSIFY_CLASSIFY_H__
#include "adaptive.h"
#include "ccstruct.h"
#include "classify.h"
#include "dict.h"
#include "fxdefs.h"
#include "intmatcher.h"
#include "ratngs.h"
#include "ocrfeatures.h"
#include "unicity_table.h"
class WERD_CHOICE;
struct ADAPT_RESULTS;
struct NORM_PROTOS;
namespace tesseract {
class Classify : public CCStruct {
public:
Classify();
~Classify();
Dict& getDict() {
return dict_;
}
/* adaptive.cpp ************************************************************/
ADAPT_TEMPLATES NewAdaptedTemplates(bool InitFromUnicharset);
int ClassPruner(INT_TEMPLATES IntTemplates,
inT16 NumFeatures,
INT_FEATURE_ARRAY Features,
CLASS_NORMALIZATION_ARRAY NormalizationFactors,
CLASS_CUTOFF_ARRAY ExpectedNumFeatures,
CLASS_PRUNER_RESULTS Results,
int Debug);
void ReadNewCutoffs(FILE *CutoffFile, inT64 end_offset,
CLASS_CUTOFF_ARRAY Cutoffs);
void PrintAdaptedTemplates(FILE *File, ADAPT_TEMPLATES Templates);
void WriteAdaptedTemplates(FILE *File, ADAPT_TEMPLATES Templates);
ADAPT_TEMPLATES ReadAdaptedTemplates(FILE *File);
/* normmatch.cpp ************************************************************/
FLOAT32 ComputeNormMatch(CLASS_ID ClassId, FEATURE Feature, BOOL8 DebugMatch);
void FreeNormProtos();
NORM_PROTOS *ReadNormProtos(FILE *File, inT64 end_offset);
/* protos.cpp ***************************************************************/
void ReadClassFile();
INT_TEMPLATES
CreateIntTemplates(CLASSES FloatProtos,
const UNICHARSET& target_unicharset);
/* adaptmatch.cpp ***********************************************************/
void AdaptToWord(TWERD *Word,
TEXTROW *Row,
const WERD_CHOICE& BestChoice,
const WERD_CHOICE& BestRawChoice,
const char *rejmap);
void InitAdaptiveClassifier();
void InitAdaptedClass(TBLOB *Blob,
LINE_STATS *LineStats,
CLASS_ID ClassId,
ADAPT_CLASS Class,
ADAPT_TEMPLATES Templates);
void AdaptToPunc(TBLOB *Blob,
LINE_STATS *LineStats,
CLASS_ID ClassId,
FLOAT32 Threshold);
void AmbigClassifier(TBLOB *Blob,
LINE_STATS *LineStats,
INT_TEMPLATES Templates,
UNICHAR_ID *Ambiguities,
ADAPT_RESULTS *Results);
void MasterMatcher(INT_TEMPLATES templates,
inT16 num_features,
INT_FEATURE_ARRAY features,
CLASS_NORMALIZATION_ARRAY norm_factors,
ADAPT_CLASS* classes,
int debug,
int num_classes,
CLASS_PRUNER_RESULTS results,
ADAPT_RESULTS* final_results);
void ConvertMatchesToChoices(ADAPT_RESULTS *Results,
BLOB_CHOICE_LIST *Choices);
void AddNewResult(ADAPT_RESULTS *Results,
CLASS_ID ClassId,
FLOAT32 Rating,
int ConfigId);
#ifndef GRAPHICS_DISABLED
void DebugAdaptiveClassifier(TBLOB *Blob,
LINE_STATS *LineStats,
ADAPT_RESULTS *Results);
#endif
void GetAdaptThresholds (TWERD * Word,
LINE_STATS * LineStats,
const WERD_CHOICE& BestChoice,
const WERD_CHOICE& BestRawChoice,
FLOAT32 Thresholds[]);
int MakeNewTemporaryConfig(ADAPT_TEMPLATES Templates,
CLASS_ID ClassId,
int NumFeatures,
INT_FEATURE_ARRAY Features,
FEATURE_SET FloatFeatures);
void MakePermanent(ADAPT_TEMPLATES Templates,
CLASS_ID ClassId,
int ConfigId,
TBLOB *Blob,
LINE_STATS *LineStats);
void PrintAdaptiveMatchResults(FILE *File, ADAPT_RESULTS *Results);
void RemoveExtraPuncs(ADAPT_RESULTS *Results);
void RemoveBadMatches(ADAPT_RESULTS *Results);
void ShowBestMatchFor(TBLOB *Blob,
LINE_STATS *LineStats,
CLASS_ID ClassId,
BOOL8 AdaptiveOn,
BOOL8 PreTrainedOn);
UNICHAR_ID *BaselineClassifier(TBLOB *Blob,
LINE_STATS *LineStats,
ADAPT_TEMPLATES Templates,
ADAPT_RESULTS *Results);
int CharNormClassifier(TBLOB *Blob,
LINE_STATS *LineStats,
INT_TEMPLATES Templates,
ADAPT_RESULTS *Results);
UNICHAR_ID *GetAmbiguities(TBLOB *Blob,
LINE_STATS *LineStats,
CLASS_ID CorrectClass);
void DoAdaptiveMatch(TBLOB *Blob,
LINE_STATS *LineStats,
ADAPT_RESULTS *Results);
void AdaptToChar(TBLOB *Blob,
LINE_STATS *LineStats,
CLASS_ID ClassId,
FLOAT32 Threshold);
int AdaptableWord(TWERD *Word,
const WERD_CHOICE &BestChoiceWord,
const WERD_CHOICE &RawChoiceWord);
void EndAdaptiveClassifier();
void PrintAdaptiveStatistics(FILE *File);
void SettupPass1();
void SettupPass2();
void AdaptiveClassifier(TBLOB *Blob,
TBLOB *DotBlob,
TEXTROW *Row,
BLOB_CHOICE_LIST *Choices,
CLASS_PRUNER_RESULTS cp_results);
void ClassifyAsNoise(ADAPT_RESULTS *Results);
void ResetAdaptiveClassifier();
FLOAT32 GetBestRatingFor(TBLOB *Blob,
LINE_STATS *LineStats,
CLASS_ID ClassId);
int GetCharNormFeatures(TBLOB *Blob,
LINE_STATS *LineStats,
INT_TEMPLATES Templates,
INT_FEATURE_ARRAY IntFeatures,
CLASS_NORMALIZATION_ARRAY CharNormArray,
inT32 *BlobLength);
int GetIntCharNormFeatures(TBLOB *Blob,
LINE_STATS *LineStats,
INT_TEMPLATES Templates,
INT_FEATURE_ARRAY IntFeatures,
CLASS_NORMALIZATION_ARRAY CharNormArray,
inT32 *BlobLength);
/* float2int.cpp ************************************************************/
void ComputeIntCharNormArray(FEATURE NormFeature,
INT_TEMPLATES Templates,
CLASS_NORMALIZATION_ARRAY CharNormArray);
/* intproto.cpp *************************************************************/
INT_TEMPLATES ReadIntTemplates(FILE *File);
void WriteIntTemplates(FILE *File, INT_TEMPLATES Templates,
const UNICHARSET& target_unicharset);
CLASS_ID GetClassToDebug(const char *Prompt);
/* font detection ***********************************************************/
UnicityTable<FontInfo>& get_fontinfo_table() {
return fontinfo_table_;
}
UnicityTable<FontSet>& get_fontset_table() {
return fontset_table_;
}
/* adaptmatch.cpp ***********************************************************/
/* name of current image file being processed */
INT_VAR_H(tessedit_single_match, FALSE, "Top choice only from CP");
/* use class variables to hold onto built-in templates and adapted
templates */
INT_TEMPLATES PreTrainedTemplates;
ADAPT_TEMPLATES AdaptedTemplates;
// Successful load of inttemp allows base tesseract classfier to be used.
bool inttemp_loaded_;
/* create dummy proto and config masks for use with the built-in templates */
BIT_VECTOR AllProtosOn;
BIT_VECTOR PrunedProtos;
BIT_VECTOR AllConfigsOn;
BIT_VECTOR AllProtosOff;
BIT_VECTOR AllConfigsOff;
BIT_VECTOR TempProtoMask;
// External control of adaption.
BOOL_VAR_H(classify_enable_learning, true, "Enable adaptive classifier");
// Internal control of Adaption so it doesn't work on pass2.
BOOL_VAR_H(classify_recog_devanagari, false,
"Whether recognizing a language with devanagari script.");
bool EnableLearning;
/* normmatch.cpp */
NORM_PROTOS *NormProtos;
/* font detection ***********************************************************/
UnicityTable<FontInfo> fontinfo_table_;
UnicityTable<FontSet> fontset_table_;
private:
Dict dict_;
};
} // namespace tesseract
#endif // TESSERACT_CLASSIFY_CLASSIFY_H__