tesseract/training/cnTraining.cpp

856 lines
24 KiB
C++
Raw Normal View History

/******************************************************************************
** Filename: cnTraining.cpp
** Purpose: Generates a normproto and pffmtable.
** Author: Dan Johnson
** Revisment: Christy Russon
** History: Fri Aug 18 08:53:50 1989, DSJ, Created.
** 5/25/90, DSJ, Adapted to multiple feature types.
** Tuesday, May 17, 1998 Changes made to make feature specific and
** simplify structures. First step in simplifying training process.
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
/**----------------------------------------------------------------------------
Include Files and Type Defines
----------------------------------------------------------------------------**/
#include "oldlist.h"
#include "efio.h"
#include "emalloc.h"
#include "featdefs.h"
#include "tessopt.h"
#include "ocrfeatures.h"
#include "general.h"
#include "clusttool.h"
#include "cluster.h"
#include "name2char.h"
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "unichar.h"
#define MAXNAMESIZE 80
#define MAX_NUM_SAMPLES 10000
#define PROGRAM_FEATURE_TYPE "cn"
#define MINSD (1.0f / 64.0f)
int row_number; /* cjn: fixes link problem */
typedef struct
{
char *Label;
int SampleCount;
LIST List;
}
LABELEDLISTNODE, *LABELEDLIST;
#define round(x,frag)(floor(x/frag+.5)*frag)
/**----------------------------------------------------------------------------
Public Function Prototypes
----------------------------------------------------------------------------**/
int main (
int argc,
char **argv);
/**----------------------------------------------------------------------------
Private Function Prototypes
----------------------------------------------------------------------------**/
void ParseArguments(
int argc,
char **argv);
char *GetNextFilename ();
void ReadTrainingSamples (
FILE *File,
LIST* TrainingSamples);
LABELEDLIST FindList (
LIST List,
char *Label);
LABELEDLIST NewLabeledList (
char *Label);
void WriteTrainingSamples (
char *Directory,
LIST CharList);
void WriteNormProtos (
char *Directory,
LIST LabeledProtoList,
CLUSTERER *Clusterer);
void FreeTrainingSamples (
LIST CharList);
void FreeNormProtoList (
LIST CharList);
void FreeLabeledList (
LABELEDLIST LabeledList);
CLUSTERER *SetUpForClustering(
LABELEDLIST CharSample);
/*
PARAMDESC *ConvertToPARAMDESC(
PARAM_DESC* Param_Desc,
int N);
*/
void AddToNormProtosList(
LIST* NormProtoList,
LIST ProtoList,
char* CharName);
void WriteProtos(
FILE *File,
uinT16 N,
LIST ProtoList,
BOOL8 WriteSigProtos,
BOOL8 WriteInsigProtos);
int NumberOfProtos(
LIST ProtoList,
BOOL8 CountSigProtos,
BOOL8 CountInsigProtos);
/**----------------------------------------------------------------------------
Global Data Definitions and Declarations
----------------------------------------------------------------------------**/
static char FontName[MAXNAMESIZE];
/* globals used for parsing command line arguments */
static char *Directory = NULL;
static int MaxNumSamples = MAX_NUM_SAMPLES;
static int Argc;
static char **Argv;
/* globals used to control what information is saved in the output file */
static BOOL8 ShowAllSamples = FALSE;
static BOOL8 ShowSignificantProtos = TRUE;
static BOOL8 ShowInsignificantProtos = FALSE;
/* global variable to hold configuration parameters to control clustering */
//-M 0.025 -B 0.05 -I 0.8 -C 1e-3
static CLUSTERCONFIG Config =
{
elliptical, 0.025, 0.05, 0.8, 1e-3, 0
};
static FLOAT32 RoundingAccuracy = 0.0;
/**----------------------------------------------------------------------------
Public Code
----------------------------------------------------------------------------**/
/*---------------------------------------------------------------------------*/
int main (
int argc,
char **argv)
/*
** Parameters:
** argc number of command line arguments
** argv array of command line arguments
** Globals: none
** Operation:
** This program reads in a text file consisting of feature
** samples from a training page in the following format:
**
** FontName CharName NumberOfFeatureTypes(N)
** FeatureTypeName1 NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** FeatureTypeName2 NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** ...
** FeatureTypeNameN NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** FontName CharName ...
**
** It then appends these samples into a separate file for each
** character. The name of the file is
**
** DirectoryName/FontName/CharName.FeatureTypeName
**
** The DirectoryName can be specified via a command
** line argument. If not specified, it defaults to the
** current directory. The format of the resulting files is:
**
** NumberOfFeatures(M)
** Feature1
** ...
** FeatureM
** NumberOfFeatures(M)
** ...
**
** The output files each have a header which describes the
** type of feature which the file contains. This header is
** in the format required by the clusterer. A command line
** argument can also be used to specify that only the first
** N samples of each class should be used.
** Return: none
** Exceptions: none
** History: Fri Aug 18 08:56:17 1989, DSJ, Created.
*/
{
char *PageName;
FILE *TrainingPage;
LIST CharList = NIL;
CLUSTERER *Clusterer = NULL;
LIST ProtoList = NIL;
LIST NormProtoList = NIL;
LIST pCharList;
LABELEDLIST CharSample;
ParseArguments (argc, argv);
while ((PageName = GetNextFilename()) != NULL)
{
printf ("Reading %s ...\n", PageName);
TrainingPage = Efopen (PageName, "r");
ReadTrainingSamples (TrainingPage, &CharList);
fclose (TrainingPage);
//WriteTrainingSamples (Directory, CharList);
}
printf("Clustering ...\n");
pCharList = CharList;
iterate(pCharList)
{
//Cluster
CharSample = (LABELEDLIST) first_node (pCharList);
//printf ("\nClustering %s ...", CharSample->Label);
Clusterer = SetUpForClustering(CharSample);
float SavedMinSamples = Config.MinSamples;
Config.MagicSamples = CharSample->SampleCount;
while (Config.MinSamples > 0.001) {
ProtoList = ClusterSamples(Clusterer, &Config);
if (NumberOfProtos(ProtoList, 1, 0) > 0)
break;
else {
Config.MinSamples *= 0.95;
printf("0 significant protos for %s."
" Retrying clustering with MinSamples = %f%%\n",
CharSample->Label, Config.MinSamples);
}
}
Config.MinSamples = SavedMinSamples;
AddToNormProtosList(&NormProtoList, ProtoList, CharSample->Label);
}
FreeTrainingSamples (CharList);
WriteNormProtos (Directory, NormProtoList, Clusterer);
FreeClusterer(Clusterer);
FreeProtoList(&ProtoList);
FreeNormProtoList(NormProtoList);
printf ("\n");
return 0;
} // main
/**----------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------**/
/*---------------------------------------------------------------------------*/
void ParseArguments(
int argc,
char **argv)
/*
** Parameters:
** argc number of command line arguments to parse
** argv command line arguments
** Globals:
** ShowAllSamples flag controlling samples display
** ShowSignificantProtos flag controlling proto display
** ShowInsignificantProtos flag controlling proto display
** Config current clustering parameters
** tessoptarg, tessoptind defined by tessopt sys call
** Argc, Argv global copies of argc and argv
** Operation:
** This routine parses the command line arguments that were
** passed to the program. The legal arguments are:
** -d "turn off display of samples"
** -p "turn off significant protos"
** -n "turn off insignificant proto"
** -S [ spherical | elliptical | mixed | automatic ]
** -M MinSamples "min samples per prototype (%)"
** -B MaxIllegal "max illegal chars per cluster (%)"
** -I Independence "0 to 1"
** -C Confidence "1e-200 to 1.0"
** -D Directory
** -N MaxNumSamples
** -R RoundingAccuracy
** Return: none
** Exceptions: Illegal options terminate the program.
** History: 7/24/89, DSJ, Created.
*/
{
int Option;
int ParametersRead;
BOOL8 Error;
Error = FALSE;
Argc = argc;
Argv = argv;
while (( Option = tessopt( argc, argv, "R:N:D:C:I:M:B:S:d:n:p" )) != EOF )
{
switch ( Option )
{
case 'n':
sscanf(tessoptarg,"%d", &ParametersRead);
ShowInsignificantProtos = ParametersRead;
break;
case 'p':
sscanf(tessoptarg,"%d", &ParametersRead);
ShowSignificantProtos = ParametersRead;
break;
case 'd':
ShowAllSamples = FALSE;
break;
case 'C':
ParametersRead = sscanf( tessoptarg, "%lf", &(Config.Confidence) );
if ( ParametersRead != 1 ) Error = TRUE;
else if ( Config.Confidence > 1 ) Config.Confidence = 1;
else if ( Config.Confidence < 0 ) Config.Confidence = 0;
break;
case 'I':
ParametersRead = sscanf( tessoptarg, "%f", &(Config.Independence) );
if ( ParametersRead != 1 ) Error = TRUE;
else if ( Config.Independence > 1 ) Config.Independence = 1;
else if ( Config.Independence < 0 ) Config.Independence = 0;
break;
case 'M':
ParametersRead = sscanf( tessoptarg, "%f", &(Config.MinSamples) );
if ( ParametersRead != 1 ) Error = TRUE;
else if ( Config.MinSamples > 1 ) Config.MinSamples = 1;
else if ( Config.MinSamples < 0 ) Config.MinSamples = 0;
break;
case 'B':
ParametersRead = sscanf( tessoptarg, "%f", &(Config.MaxIllegal) );
if ( ParametersRead != 1 ) Error = TRUE;
else if ( Config.MaxIllegal > 1 ) Config.MaxIllegal = 1;
else if ( Config.MaxIllegal < 0 ) Config.MaxIllegal = 0;
break;
case 'R':
ParametersRead = sscanf( tessoptarg, "%f", &RoundingAccuracy );
if ( ParametersRead != 1 ) Error = TRUE;
else if ( RoundingAccuracy > 0.01 ) RoundingAccuracy = 0.01;
else if ( RoundingAccuracy < 0.0 ) RoundingAccuracy = 0.0;
break;
case 'S':
switch ( tessoptarg[0] )
{
case 's': Config.ProtoStyle = spherical; break;
case 'e': Config.ProtoStyle = elliptical; break;
case 'm': Config.ProtoStyle = mixed; break;
case 'a': Config.ProtoStyle = automatic; break;
default: Error = TRUE;
}
break;
case 'D':
Directory = tessoptarg;
break;
case 'N':
if (sscanf (tessoptarg, "%d", &MaxNumSamples) != 1 ||
MaxNumSamples <= 0)
Error = TRUE;
break;
case '?':
Error = TRUE;
break;
}
if ( Error )
{
fprintf (stderr, "usage: %s [-D] [-P] [-N]\n", argv[0] );
fprintf (stderr, "\t[-S ProtoStyle]\n");
fprintf (stderr, "\t[-M MinSamples] [-B MaxBad] [-I Independence] [-C Confidence]\n" );
fprintf (stderr, "\t[-d directory] [-n MaxNumSamples] [ TrainingPage ... ]\n");
exit (2);
}
}
} /* ParseArguments */
/*---------------------------------------------------------------------------*/
char *GetNextFilename ()
/*
** Parameters: none
** Globals:
** tessoptind defined by tessopt sys call
** Argc, Argv global copies of argc and argv
** Operation:
** This routine returns the next command line argument. If
** there are no remaining command line arguments, it returns
** NULL. This routine should only be called after all option
** arguments have been parsed and removed with ParseArguments.
** Return: Next command line argument or NULL.
** Exceptions: none
** History: Fri Aug 18 09:34:12 1989, DSJ, Created.
*/
{
if (tessoptind < Argc)
return (Argv [tessoptind++]);
else
return (NULL);
} /* GetNextFilename */
/*---------------------------------------------------------------------------*/
void ReadTrainingSamples (
FILE *File,
LIST* TrainingSamples)
/*
** Parameters:
** File open text file to read samples from
** Globals: none
** Operation:
** This routine reads training samples from a file and
** places them into a data structure which organizes the
** samples by FontName and CharName. It then returns this
** data structure.
** Return: none
** Exceptions: none
** History: Fri Aug 18 13:11:39 1989, DSJ, Created.
** Tue May 17 1998 simplifications to structure, illiminated
** font, and feature specification levels of structure.
*/
{
char unichar[UNICHAR_LEN + 1];
LABELEDLIST CharSample;
FEATURE_SET FeatureSamples;
CHAR_DESC CharDesc;
int Type, i;
while (fscanf (File, "%s %s", FontName, unichar) == 2) {
CharSample = FindList (*TrainingSamples, unichar);
if (CharSample == NULL) {
CharSample = NewLabeledList (unichar);
*TrainingSamples = push (*TrainingSamples, CharSample);
}
CharDesc = ReadCharDescription (File);
Type = ShortNameToFeatureType(PROGRAM_FEATURE_TYPE);
FeatureSamples = CharDesc->FeatureSets[Type];
for (int feature = 0; feature < FeatureSamples->NumFeatures; ++feature) {
FEATURE f = FeatureSamples->Features[feature];
for (int dim =0; dim < f->Type->NumParams; ++dim)
f->Params[dim] += UniformRandomNumber(-MINSD, MINSD);
}
CharSample->List = push (CharSample->List, FeatureSamples);
CharSample->SampleCount++;
for (i = 0; i < CharDesc->NumFeatureSets; i++)
if (Type != i)
FreeFeatureSet(CharDesc->FeatureSets[i]);
free (CharDesc);
}
} // ReadTrainingSamples
/*---------------------------------------------------------------------------*/
LABELEDLIST FindList (
LIST List,
char *Label)
/*
** Parameters:
** List list to search
** Label label to search for
** Globals: none
** Operation:
** This routine searches thru a list of labeled lists to find
** a list with the specified label. If a matching labeled list
** cannot be found, NULL is returned.
** Return: Labeled list with the specified Label or NULL.
** Exceptions: none
** History: Fri Aug 18 15:57:41 1989, DSJ, Created.
*/
{
LABELEDLIST LabeledList;
iterate (List)
{
LabeledList = (LABELEDLIST) first_node (List);
if (strcmp (LabeledList->Label, Label) == 0)
return (LabeledList);
}
return (NULL);
} /* FindList */
/*---------------------------------------------------------------------------*/
LABELEDLIST NewLabeledList (
char *Label)
/*
** Parameters:
** Label label for new list
** Globals: none
** Operation:
** This routine allocates a new, empty labeled list and gives
** it the specified label.
** Return: New, empty labeled list.
** Exceptions: none
** History: Fri Aug 18 16:08:46 1989, DSJ, Created.
*/
{
LABELEDLIST LabeledList;
LabeledList = (LABELEDLIST) (char*)Emalloc (sizeof (LABELEDLISTNODE));
LabeledList->Label = (char*)Emalloc (strlen (Label)+1);
strcpy (LabeledList->Label, Label);
LabeledList->List = NIL;
LabeledList->SampleCount = 0;
return (LabeledList);
} /* NewLabeledList */
/*---------------------------------------------------------------------------*/
void WriteTrainingSamples (
char *Directory,
LIST CharList)
/*
** Parameters:
** Directory directory to place sample files into
** FontList list of fonts used in the training samples
** Globals:
** MaxNumSamples max number of samples per class to write
** Operation:
** This routine writes the specified samples into files which
** are organized according to the font name and character name
** of the samples.
** Return: none
** Exceptions: none
** History: Fri Aug 18 16:17:06 1989, DSJ, Created.
*/
{
LABELEDLIST CharSample;
FEATURE_SET FeatureSet;
LIST FeatureList;
FILE *File;
char Filename[MAXNAMESIZE];
int NumSamples;
iterate (CharList) // iterate thru all of the fonts
{
CharSample = (LABELEDLIST) first_node (CharList);
// construct the full pathname for the current samples file
strcpy (Filename, "");
if (Directory != NULL)
{
strcat (Filename, Directory);
strcat (Filename, "/");
}
strcat (Filename, "Merged");
strcat (Filename, "/");
strcat (Filename, CharSample->Label);
strcat (Filename, ".");
strcat (Filename, PROGRAM_FEATURE_TYPE);
printf ("\nWriting %s ...", Filename);
/* if file does not exist, create a new one with an appropriate
header; otherwise append samples to the existing file */
File = fopen (Filename, "r");
if (File == NULL)
{
File = Efopen (Filename, "w");
WriteOldParamDesc
(File, FeatureDefs.FeatureDesc[ShortNameToFeatureType (PROGRAM_FEATURE_TYPE)]);
}
else
{
fclose (File);
File = Efopen (Filename, "a");
}
// append samples onto the file
FeatureList = CharSample->List;
NumSamples = 0;
iterate (FeatureList)
{
//if (NumSamples >= MaxNumSamples) break;
FeatureSet = (FEATURE_SET) first_node (FeatureList);
WriteFeatureSet (File, FeatureSet);
NumSamples++;
}
fclose (File);
}
} /* WriteTrainingSamples */
/*----------------------------------------------------------------------------*/
void WriteNormProtos (
char *Directory,
LIST LabeledProtoList,
CLUSTERER *Clusterer)
/*
** Parameters:
** Directory directory to place sample files into
** Globals:
** MaxNumSamples max number of samples per class to write
** Operation:
** This routine writes the specified samples into files which
** are organized according to the font name and character name
** of the samples.
** Return: none
** Exceptions: none
** History: Fri Aug 18 16:17:06 1989, DSJ, Created.
*/
{
FILE *File;
char Filename[MAXNAMESIZE];
LABELEDLIST LabeledProto;
int N;
strcpy (Filename, "");
if (Directory != NULL)
{
strcat (Filename, Directory);
strcat (Filename, "/");
}
strcat (Filename, "normproto");
printf ("\nWriting %s ...", Filename);
File = Efopen (Filename, "w");
fprintf(File,"%0d\n",Clusterer->SampleSize);
WriteParamDesc(File,Clusterer->SampleSize,Clusterer->ParamDesc);
iterate(LabeledProtoList)
{
LabeledProto = (LABELEDLIST) first_node (LabeledProtoList);
N = NumberOfProtos(LabeledProto->List,
ShowSignificantProtos, ShowInsignificantProtos);
if (N < 1) {
printf ("\nError! Not enough protos for %s: %d protos"
" (%d significant protos"
", %d insignificant protos)\n",
LabeledProto->Label, N,
NumberOfProtos(LabeledProto->List, 1, 0),
NumberOfProtos(LabeledProto->List, 0, 1));
exit(1);
}
fprintf(File, "\n%s %d\n", LabeledProto->Label, N);
WriteProtos(File, Clusterer->SampleSize, LabeledProto->List,
ShowSignificantProtos, ShowInsignificantProtos);
}
fclose (File);
} // WriteNormProtos
/*---------------------------------------------------------------------------*/
void FreeTrainingSamples (
LIST CharList)
/*
** Parameters:
** FontList list of all fonts in document
** Globals: none
** Operation:
** This routine deallocates all of the space allocated to
** the specified list of training samples.
** Return: none
** Exceptions: none
** History: Fri Aug 18 17:44:27 1989, DSJ, Created.
*/
{
LABELEDLIST CharSample;
FEATURE_SET FeatureSet;
LIST FeatureList;
printf ("\nFreeTrainingSamples...");
iterate (CharList) /* iterate thru all of the fonts */
{
CharSample = (LABELEDLIST) first_node (CharList);
FeatureList = CharSample->List;
iterate (FeatureList) /* iterate thru all of the classes */
{
FeatureSet = (FEATURE_SET) first_node (FeatureList);
FreeFeatureSet (FeatureSet);
}
FreeLabeledList (CharSample);
}
destroy (CharList);
} /* FreeTrainingSamples */
/*-------------------------------------------------------------------------*/
void FreeNormProtoList (
LIST CharList)
{
LABELEDLIST CharSample;
iterate (CharList) /* iterate thru all of the fonts */
{
CharSample = (LABELEDLIST) first_node (CharList);
FreeLabeledList (CharSample);
}
destroy (CharList);
} // FreeNormProtoList
/*---------------------------------------------------------------------------*/
void FreeLabeledList (
LABELEDLIST LabeledList)
/*
** Parameters:
** LabeledList labeled list to be freed
** Globals: none
** Operation:
** This routine deallocates all of the memory consumed by
** a labeled list. It does not free any memory which may be
** consumed by the items in the list.
** Return: none
** Exceptions: none
** History: Fri Aug 18 17:52:45 1989, DSJ, Created.
*/
{
destroy (LabeledList->List);
free (LabeledList->Label);
free (LabeledList);
} /* FreeLabeledList */
/*---------------------------------------------------------------------------*/
CLUSTERER *SetUpForClustering(
LABELEDLIST CharSample)
/*
** Parameters:
** CharSample: LABELEDLIST that holds all the feature information for a
** given character.
** Globals:
** None
** Operation:
** This routine reads samples from a LABELEDLIST and enters
** those samples into a clusterer data structure. This
** data structure is then returned to the caller.
** Return:
** Pointer to new clusterer data structure.
** Exceptions:
** None
** History:
** 8/16/89, DSJ, Created.
*/
{
uinT16 N;
int i, j;
FLOAT32 *Sample = NULL;
CLUSTERER *Clusterer;
inT32 CharID;
LIST FeatureList = NULL;
FEATURE_SET FeatureSet = NULL;
FEATURE_DESC FeatureDesc = NULL;
// PARAM_DESC* ParamDesc;
FeatureDesc = FeatureDefs.FeatureDesc[ShortNameToFeatureType(PROGRAM_FEATURE_TYPE)];
N = FeatureDesc->NumParams;
//ParamDesc = ConvertToPARAMDESC(FeatureDesc->ParamDesc, N);
Clusterer = MakeClusterer(N,FeatureDesc->ParamDesc);
// free(ParamDesc);
FeatureList = CharSample->List;
CharID = 0;
iterate(FeatureList)
{
FeatureSet = (FEATURE_SET) first_node (FeatureList);
for (i=0; i < FeatureSet->MaxNumFeatures; i++)
{
if (Sample == NULL)
Sample = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32));
for (j=0; j < N; j++)
if (RoundingAccuracy != 0.0)
Sample[j] = round(FeatureSet->Features[i]->Params[j], RoundingAccuracy);
else
Sample[j] = FeatureSet->Features[i]->Params[j];
MakeSample (Clusterer, Sample, CharID);
}
CharID++;
}
if ( Sample != NULL ) free( Sample );
return( Clusterer );
} /* SetUpForClustering */
/*---------------------------------------------------------------------------*/
void AddToNormProtosList(
LIST* NormProtoList,
LIST ProtoList,
char* CharName)
{
PROTOTYPE* Proto;
LABELEDLIST LabeledProtoList;
LabeledProtoList = NewLabeledList(CharName);
iterate(ProtoList)
{
Proto = (PROTOTYPE *) first_node (ProtoList);
LabeledProtoList->List = push(LabeledProtoList->List, Proto);
}
*NormProtoList = push(*NormProtoList, LabeledProtoList);
}
/*-------------------------------------------------------------------------*/
void WriteProtos(
FILE *File,
uinT16 N,
LIST ProtoList,
BOOL8 WriteSigProtos,
BOOL8 WriteInsigProtos)
{
PROTOTYPE *Proto;
// write prototypes
iterate(ProtoList)
{
Proto = (PROTOTYPE *) first_node ( ProtoList );
if (( Proto->Significant && WriteSigProtos ) ||
( ! Proto->Significant && WriteInsigProtos ) )
WritePrototype( File, N, Proto );
}
} // WriteProtos
/*---------------------------------------------------------------------------*/
int NumberOfProtos(
LIST ProtoList,
BOOL8 CountSigProtos,
BOOL8 CountInsigProtos)
{
int N = 0;
PROTOTYPE *Proto;
iterate(ProtoList)
{
Proto = (PROTOTYPE *) first_node ( ProtoList );
if (( Proto->Significant && CountSigProtos ) ||
( ! Proto->Significant && CountInsigProtos ) )
N++;
}
return(N);
}