tesseract/cube/feature_chebyshev.cpp

139 lines
5.1 KiB
C++
Raw Normal View History

/**********************************************************************
* File: feature_chebyshev.cpp
* Description: Implementation of the Chebyshev coefficients Feature Class
* Author: Ahmad Abdulkader
* Created: 2008
*
* (C) Copyright 2008, Google Inc.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string>
#include <vector>
#include <algorithm>
#include "feature_base.h"
#include "feature_chebyshev.h"
#include "cube_utils.h"
#include "const.h"
#include "char_samp.h"
namespace tesseract {
FeatureChebyshev::FeatureChebyshev(TuningParams *params)
: FeatureBase(params) {
}
FeatureChebyshev::~FeatureChebyshev() {
}
// Render a visualization of the features to a CharSamp.
// This is mainly used by visual-debuggers
CharSamp *FeatureChebyshev::ComputeFeatureBitmap(CharSamp *char_samp) {
return char_samp;
}
// Compute Chebyshev coefficients for the specified vector
void FeatureChebyshev::ChebyshevCoefficients(const vector<float> &input,
int coeff_cnt, float *coeff) {
// re-sample function
int input_range = (input.size() - 1);
vector<float> resamp(coeff_cnt);
for (int samp_idx = 0; samp_idx < coeff_cnt; samp_idx++) {
// compute sampling position
float samp_pos = input_range *
(1 + cos(M_PI * (samp_idx + 0.5) / coeff_cnt)) / 2;
// interpolate
int samp_start = static_cast<int>(samp_pos);
int samp_end = static_cast<int>(samp_pos + 0.5);
float func_delta = input[samp_end] - input[samp_start];
resamp[samp_idx] = input[samp_start] +
((samp_pos - samp_start) * func_delta);
}
// compute the coefficients
float normalizer = 2.0 / coeff_cnt;
for (int coeff_idx = 0; coeff_idx < coeff_cnt; coeff_idx++, coeff++) {
double sum = 0.0;
for (int samp_idx = 0; samp_idx < coeff_cnt; samp_idx++) {
sum += resamp[samp_idx] * cos(M_PI * coeff_idx * (samp_idx + 0.5) /
coeff_cnt);
}
(*coeff) = (normalizer * sum);
}
}
// Compute the features of a given CharSamp
bool FeatureChebyshev::ComputeFeatures(CharSamp *char_samp, float *features) {
return ComputeChebyshevCoefficients(char_samp, features);
}
// Compute the Chebyshev coefficients of a given CharSamp
bool FeatureChebyshev::ComputeChebyshevCoefficients(CharSamp *char_samp,
float *features) {
if (char_samp->NormBottom() <= 0) {
return false;
}
unsigned char *raw_data = char_samp->RawData();
int stride = char_samp->Stride();
// compute the height of the word
int word_hgt = (255 * (char_samp->Top() + char_samp->Height()) /
char_samp->NormBottom());
// compute left & right profiles
vector<float> left_profile(word_hgt, 0.0);
vector<float> right_profile(word_hgt, 0.0);
unsigned char *line_data = raw_data;
for (int y = 0; y < char_samp->Height(); y++, line_data += stride) {
int min_x = char_samp->Width();
int max_x = -1;
for (int x = 0; x < char_samp->Width(); x++) {
if (line_data[x] == 0) {
UpdateRange(x, &min_x, &max_x);
}
}
left_profile[char_samp->Top() + y] =
1.0 * (min_x == char_samp->Width() ? 0 : (min_x + 1)) /
char_samp->Width();
right_profile[char_samp->Top() + y] =
1.0 * (max_x == -1 ? 0 : char_samp->Width() - max_x) /
char_samp->Width();
}
// compute top and bottom profiles
vector<float> top_profile(char_samp->Width(), 0);
vector<float> bottom_profile(char_samp->Width(), 0);
for (int x = 0; x < char_samp->Width(); x++) {
int min_y = word_hgt;
int max_y = -1;
line_data = raw_data;
for (int y = 0; y < char_samp->Height(); y++, line_data += stride) {
if (line_data[x] == 0) {
UpdateRange(y + char_samp->Top(), &min_y, &max_y);
}
}
top_profile[x] = 1.0 * (min_y == word_hgt ? 0 : (min_y + 1)) / word_hgt;
bottom_profile[x] = 1.0 * (max_y == -1 ? 0 : (word_hgt - max_y)) / word_hgt;
}
// compute the chebyshev coefficients of each profile
ChebyshevCoefficients(left_profile, kChebychevCoefficientCnt, features);
ChebyshevCoefficients(top_profile, kChebychevCoefficientCnt,
features + kChebychevCoefficientCnt);
ChebyshevCoefficients(right_profile, kChebychevCoefficientCnt,
features + (2 * kChebychevCoefficientCnt));
ChebyshevCoefficients(bottom_profile, kChebychevCoefficientCnt,
features + (3 * kChebychevCoefficientCnt));
return true;
}
} // namespace tesseract