2017-08-03 08:35:29 +08:00
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
// File: matrix_test.cc
|
|
|
|
// Author: rays@google.com (Ray Smith)
|
|
|
|
//
|
|
|
|
// Copyright 2016 Google Inc. All Rights Reserved.
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#include "matrix.h"
|
|
|
|
#include "genericvector.h"
|
2018-09-29 15:19:13 +08:00
|
|
|
#include "include_gunit.h"
|
2017-08-03 08:35:29 +08:00
|
|
|
#include "tprintf.h"
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
class MatrixTest : public ::testing::Test {
|
|
|
|
protected:
|
|
|
|
// Fills src_ with data so it can pretend to be a tensor thus:
|
|
|
|
// dims_=[5, 4, 3, 2]
|
|
|
|
// array_=[0, 1, 2, ....119]
|
|
|
|
// tensor=[[[[0, 1][2, 3][4, 5]]
|
|
|
|
// [[6, 7][8, 9][10, 11]]
|
|
|
|
// [[12, 13][14, 15][16, 17]]
|
|
|
|
// [[18, 19][20, 21][22, 23]]]
|
|
|
|
// [[[24, 25]...
|
|
|
|
MatrixTest() {
|
|
|
|
src_.Resize(1, kInputSize_, 0);
|
|
|
|
for (int i = 0; i < kInputSize_; ++i) {
|
|
|
|
src_.put(0, i, i);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < kNumDims_; ++i) dims_[i] = 5 - i;
|
|
|
|
}
|
|
|
|
// Number of dimensions in src_.
|
|
|
|
static const int kNumDims_ = 4;
|
|
|
|
// Number of elements in src_.
|
|
|
|
static const int kInputSize_ = 120;
|
|
|
|
// Size of each dimension in src_;
|
|
|
|
int dims_[kNumDims_];
|
|
|
|
// Input array filled with [0,kInputSize).
|
|
|
|
GENERIC_2D_ARRAY<int> src_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Tests that the RotatingTranspose function does the right thing for various
|
|
|
|
// transformations.
|
|
|
|
// dims=[5, 4, 3, 2]->[5, 2, 4, 3]
|
|
|
|
TEST_F(MatrixTest, RotatingTranspose_3_1) {
|
|
|
|
GENERIC_2D_ARRAY<int> m;
|
|
|
|
src_.RotatingTranspose(dims_, kNumDims_, 3, 1, &m);
|
|
|
|
m.ResizeNoInit(kInputSize_ / 3, 3);
|
|
|
|
// Verify that the result is:
|
|
|
|
// output tensor=[[[[0, 2, 4][6, 8, 10][12, 14, 16][18, 20, 22]]
|
|
|
|
// [[1, 3, 5][7, 9, 11][13, 15, 17][19, 21, 23]]]
|
|
|
|
// [[[24, 26, 28]...
|
|
|
|
EXPECT_EQ(0, m(0, 0));
|
|
|
|
EXPECT_EQ(2, m(0, 1));
|
|
|
|
EXPECT_EQ(4, m(0, 2));
|
|
|
|
EXPECT_EQ(6, m(1, 0));
|
|
|
|
EXPECT_EQ(1, m(4, 0));
|
|
|
|
EXPECT_EQ(24, m(8, 0));
|
|
|
|
EXPECT_EQ(26, m(8, 1));
|
|
|
|
EXPECT_EQ(25, m(12, 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
// dims=[5, 4, 3, 2]->[3, 5, 4, 2]
|
|
|
|
TEST_F(MatrixTest, RotatingTranspose_2_0) {
|
|
|
|
GENERIC_2D_ARRAY<int> m;
|
|
|
|
src_.RotatingTranspose(dims_, kNumDims_, 2, 0, &m);
|
|
|
|
m.ResizeNoInit(kInputSize_ / 2, 2);
|
|
|
|
// Verify that the result is:
|
|
|
|
// output tensor=[[[[0, 1][6, 7][12, 13][18, 19]]
|
|
|
|
// [[24, 25][30, 31][36, 37][42, 43]]
|
|
|
|
// [[48, 49][54, 55][60, 61][66, 67]]
|
|
|
|
// [[72, 73][78, 79][84, 85][90, 91]]
|
|
|
|
// [[96, 97][102, 103][108, 109][114, 115]]]
|
|
|
|
// [[[2,3]...
|
|
|
|
EXPECT_EQ(0, m(0, 0));
|
|
|
|
EXPECT_EQ(1, m(0, 1));
|
|
|
|
EXPECT_EQ(6, m(1, 0));
|
|
|
|
EXPECT_EQ(7, m(1, 1));
|
|
|
|
EXPECT_EQ(24, m(4, 0));
|
|
|
|
EXPECT_EQ(25, m(4, 1));
|
|
|
|
EXPECT_EQ(30, m(5, 0));
|
|
|
|
EXPECT_EQ(2, m(20, 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
// dims=[5, 4, 3, 2]->[5, 3, 2, 4]
|
|
|
|
TEST_F(MatrixTest, RotatingTranspose_1_3) {
|
|
|
|
GENERIC_2D_ARRAY<int> m;
|
|
|
|
src_.RotatingTranspose(dims_, kNumDims_, 1, 3, &m);
|
|
|
|
m.ResizeNoInit(kInputSize_ / 4, 4);
|
|
|
|
// Verify that the result is:
|
|
|
|
// output tensor=[[[[0, 6, 12, 18][1, 7, 13, 19]]
|
|
|
|
// [[2, 8, 14, 20][3, 9, 15, 21]]
|
|
|
|
// [[4, 10, 16, 22][5, 11, 17, 23]]]
|
|
|
|
// [[[24, 30, 36, 42]...
|
|
|
|
EXPECT_EQ(0, m(0, 0));
|
|
|
|
EXPECT_EQ(6, m(0, 1));
|
|
|
|
EXPECT_EQ(1, m(1, 0));
|
|
|
|
EXPECT_EQ(2, m(2, 0));
|
|
|
|
EXPECT_EQ(3, m(3, 0));
|
|
|
|
EXPECT_EQ(4, m(4, 0));
|
|
|
|
EXPECT_EQ(5, m(5, 0));
|
|
|
|
EXPECT_EQ(24, m(6, 0));
|
|
|
|
EXPECT_EQ(30, m(6, 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// dims=[5, 4, 3, 2]->[4, 3, 5, 2]
|
|
|
|
TEST_F(MatrixTest, RotatingTranspose_0_2) {
|
|
|
|
GENERIC_2D_ARRAY<int> m;
|
|
|
|
src_.RotatingTranspose(dims_, kNumDims_, 0, 2, &m);
|
|
|
|
m.ResizeNoInit(kInputSize_ / 2, 2);
|
|
|
|
// Verify that the result is:
|
|
|
|
// output tensor=[[[[0, 1][24, 25][48, 49][72, 73][96, 97]]
|
|
|
|
// [[2, 3][26, 27][50, 51][74, 75][98, 99]]
|
|
|
|
// [[4, 5][28, 29][52, 53][76, 77][100, 101]]]
|
|
|
|
// [[[6, 7]...
|
|
|
|
EXPECT_EQ(0, m(0, 0));
|
|
|
|
EXPECT_EQ(1, m(0, 1));
|
|
|
|
EXPECT_EQ(24, m(1, 0));
|
|
|
|
EXPECT_EQ(25, m(1, 1));
|
|
|
|
EXPECT_EQ(96, m(4, 0));
|
|
|
|
EXPECT_EQ(97, m(4, 1));
|
|
|
|
EXPECT_EQ(2, m(5, 0));
|
|
|
|
EXPECT_EQ(6, m(15, 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|