tesseract/src/training/tesstrain.sh

103 lines
4.2 KiB
Bash
Raw Normal View History

#!/bin/bash
# (C) Copyright 2014, Google Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This script provides an easy way to execute various phases of training
# Tesseract. For a detailed description of the phases, see
# https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract
#
display_usage() {
echo -e "USAGE: tesstrain.sh
2019-01-27 15:00:25 +08:00
--exposures EXPOSURES # A list of exposure levels to use (e.g. "-1 0 1").
--fontlist FONTS # A list of fontnames to train on.
--fonts_dir FONTS_PATH # Path to font files.
--lang LANG_CODE # ISO 639 code.
--langdata_dir DATADIR # Path to tesseract/training/langdata directory.
2019-01-27 15:00:25 +08:00
--linedata_only # Only generate training data for lstmtraining.
--output_dir OUTPUTDIR # Location of output traineddata file.
--overwrite # Safe to overwrite files in output_dir.
--run_shape_clustering # Run shape clustering (use for Indic langs).
2019-01-27 15:00:25 +08:00
--maxpages # Specify maximum pages to output (default:0=all)
--save_box_tiff # Save box/tiff pairs along with lstmf files.
<<<<<<< HEAD
2019-01-27 15:00:25 +08:00
--x_size # Specify width of output image (default:3600)
=======
--xsize # Specify width of output image (default:3600)
OPTIONAL flag for specifying directory with user specified box/tiff pairs.
Files should be named similar to ${LANG_CODE}.${fontname}.exp${EXPOSURE}.box/tif
--my_boxtiff_dir MY_BOXTIFF_DIR # Location of user specified box/tiff files.
>>>>>>> c7cd112... allow box/tiff pairs for LSTM training
2019-01-27 15:00:25 +08:00
OPTIONAL flags for input data. If unspecified we will look for them in
the langdata_dir directory.
--training_text TEXTFILE # Text to render and use for training.
--wordlist WORDFILE # Word list for the language ordered by
# decreasing frequency.
OPTIONAL flag to specify location of existing traineddata files, required
during feature extraction. If unspecified will use TESSDATA_PREFIX defined in
the current environment.
--tessdata_dir TESSDATADIR # Path to tesseract/tessdata directory.
NOTE:
The font names specified in --fontlist need to be recognizable by Pango using
fontconfig. An easy way to list the canonical names of all fonts available on
your system is to run text2image with --list_available_fonts and the
appropriate --fonts_dir path."
}
source "$(dirname $0)/tesstrain_utils.sh"
if [[ $# -eq 0 || "$1" == "--help" || "$1" == "-h" ]]; then
display_usage
exit 0
fi
if [ $# == 0 ]; then
display_usage
exit 1
fi
ARGV=("$@")
parse_flags
mkdir -p ${TRAINING_DIR}
if [[ ${MY_BOXTIFF_DIR} != "" ]]; then
tlog "\n=== Copy existing box/tiff pairs from '${MY_BOXTIFF_DIR}'"
cp ${MY_BOXTIFF_DIR}/*.box ${TRAINING_DIR} | true
cp ${MY_BOXTIFF_DIR}/*.tif ${TRAINING_DIR} | true
ls -l ${TRAINING_DIR}
fi
tlog "\n=== Starting training for language '${LANG_CODE}'"
source "$(dirname $0)/language-specific.sh"
set_lang_specific_parameters ${LANG_CODE}
initialize_fontconfig
phase_I_generate_image 8
phase_UP_generate_unicharset
if ((LINEDATA)); then
2018-08-16 20:15:10 +08:00
phase_E_extract_features " --psm 6 lstm.train " 8 "lstmf"
make__lstmdata
tlog "\nCreated starter traineddata for LSTM training of language '${LANG_CODE}'\n"
tlog "\nRun 'lstmtraining' comman next to continue LSTM training for language '${LANG_CODE}'\n"
else
phase_D_generate_dawg
phase_E_extract_features "box.train" 8 "tr"
phase_C_cluster_prototypes "${TRAINING_DIR}/${LANG_CODE}.normproto"
2019-01-24 02:04:16 +08:00
phase_S_cluster_shapes
phase_M_cluster_microfeatures
phase_B_generate_ambiguities
make__traineddata
tlog "\nCompleted training for language '${LANG_CODE}'\n"
fi