tesseract/src/classify/errorcounter.cpp

501 lines
21 KiB
C++
Raw Normal View History

// Copyright 2011 Google Inc. All Rights Reserved.
// Author: rays@google.com (Ray Smith)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include <algorithm>
#include <ctime>
#include "errorcounter.h"
#include "fontinfo.h"
#include "sampleiterator.h"
#include "shapeclassifier.h"
#include "shapetable.h"
#include "trainingsample.h"
#include "trainingsampleset.h"
#include "unicity_table.h"
namespace tesseract {
// Difference in result rating to be thought of as an "equal" choice.
const double kRatingEpsilon = 1.0 / 32;
// Tests a classifier, computing its error rate.
// See errorcounter.h for description of arguments.
// Iterates over the samples, calling the classifier in normal/silent mode.
// If the classifier makes a CT_UNICHAR_TOPN_ERR error, and the appropriate
// report_level is set (4 or greater), it will then call the classifier again
// with a debug flag and a keep_this argument to find out what is going on.
double ErrorCounter::ComputeErrorRate(ShapeClassifier* classifier,
int report_level, CountTypes boosting_mode,
const FontInfoTable& fontinfo_table,
const GenericVector<Pix*>& page_images, SampleIterator* it,
double* unichar_error, double* scaled_error, STRING* fonts_report) {
const int fontsize = it->sample_set()->NumFonts();
ErrorCounter counter(classifier->GetUnicharset(), fontsize);
GenericVector<UnicharRating> results;
clock_t start = clock();
unsigned total_samples = 0;
double unscaled_error = 0.0;
// Set a number of samples on which to run the classify debug mode.
int error_samples = report_level > 3 ? report_level * report_level : 0;
// Iterate over all the samples, accumulating errors.
for (it->Begin(); !it->AtEnd(); it->Next()) {
TrainingSample* mutable_sample = it->MutableSample();
int page_index = mutable_sample->page_num();
Pix* page_pix = 0 <= page_index && page_index < page_images.size()
? page_images[page_index] : nullptr;
// No debug, no keep this.
classifier->UnicharClassifySample(*mutable_sample, page_pix, 0,
INVALID_UNICHAR_ID, &results);
bool debug_it = false;
int correct_id = mutable_sample->class_id();
if (counter.unicharset_.has_special_codes() &&
(correct_id == UNICHAR_SPACE || correct_id == UNICHAR_JOINED ||
correct_id == UNICHAR_BROKEN)) {
// This is junk so use the special counter.
debug_it = counter.AccumulateJunk(report_level > 3,
results,
mutable_sample);
} else {
debug_it = counter.AccumulateErrors(report_level > 3, boosting_mode,
fontinfo_table,
results, mutable_sample);
}
if (debug_it && error_samples > 0) {
// Running debug, keep the correct answer, and debug the classifier.
tprintf("Error on sample %d: %s Classifier debug output:\n",
it->GlobalSampleIndex(),
it->sample_set()->SampleToString(*mutable_sample).string());
classifier->DebugDisplay(*mutable_sample, page_pix, correct_id);
--error_samples;
}
++total_samples;
}
const double total_time = 1.0 * (clock() - start) / CLOCKS_PER_SEC;
// Create the appropriate error report.
unscaled_error = counter.ReportErrors(report_level, boosting_mode,
fontinfo_table,
*it, unichar_error, fonts_report);
if (scaled_error != nullptr) *scaled_error = counter.scaled_error_;
if (report_level > 1 && total_samples > 0) {
// It is useful to know the time in microseconds/char.
tprintf("Errors computed in %.2fs at %.1f μs/char\n",
total_time, 1000000.0 * total_time / total_samples);
}
return unscaled_error;
}
// Tests a pair of classifiers, debugging errors of the new against the old.
// See errorcounter.h for description of arguments.
// Iterates over the samples, calling the classifiers in normal/silent mode.
// If the new_classifier makes a boosting_mode error that the old_classifier
// does not, it will then call the new_classifier again with a debug flag
// and a keep_this argument to find out what is going on.
void ErrorCounter::DebugNewErrors(
ShapeClassifier* new_classifier, ShapeClassifier* old_classifier,
CountTypes boosting_mode,
const FontInfoTable& fontinfo_table,
const GenericVector<Pix*>& page_images, SampleIterator* it) {
int fontsize = it->sample_set()->NumFonts();
ErrorCounter old_counter(old_classifier->GetUnicharset(), fontsize);
ErrorCounter new_counter(new_classifier->GetUnicharset(), fontsize);
GenericVector<UnicharRating> results;
int total_samples = 0;
int error_samples = 25;
int total_new_errors = 0;
// Iterate over all the samples, accumulating errors.
for (it->Begin(); !it->AtEnd(); it->Next()) {
TrainingSample* mutable_sample = it->MutableSample();
int page_index = mutable_sample->page_num();
Pix* page_pix = 0 <= page_index && page_index < page_images.size()
? page_images[page_index] : nullptr;
// No debug, no keep this.
old_classifier->UnicharClassifySample(*mutable_sample, page_pix, 0,
INVALID_UNICHAR_ID, &results);
int correct_id = mutable_sample->class_id();
if (correct_id != 0 &&
!old_counter.AccumulateErrors(true, boosting_mode, fontinfo_table,
results, mutable_sample)) {
// old classifier was correct, check the new one.
new_classifier->UnicharClassifySample(*mutable_sample, page_pix, 0,
INVALID_UNICHAR_ID, &results);
if (correct_id != 0 &&
new_counter.AccumulateErrors(true, boosting_mode, fontinfo_table,
results, mutable_sample)) {
tprintf("New Error on sample %d: Classifier debug output:\n",
it->GlobalSampleIndex());
++total_new_errors;
new_classifier->UnicharClassifySample(*mutable_sample, page_pix, 1,
correct_id, &results);
if (results.size() > 0 && error_samples > 0) {
new_classifier->DebugDisplay(*mutable_sample, page_pix, correct_id);
--error_samples;
}
}
}
++total_samples;
}
tprintf("Total new errors = %d\n", total_new_errors);
}
// Constructor is private. Only anticipated use of ErrorCounter is via
// the static ComputeErrorRate.
ErrorCounter::ErrorCounter(const UNICHARSET& unicharset, int fontsize)
: scaled_error_(0.0), rating_epsilon_(kRatingEpsilon),
unichar_counts_(unicharset.size(), unicharset.size(), 0),
ok_score_hist_(0, 101), bad_score_hist_(0, 101),
unicharset_(unicharset) {
Counts empty_counts;
font_counts_.init_to_size(fontsize, empty_counts);
multi_unichar_counts_.init_to_size(unicharset.size(), 0);
}
// Accumulates the errors from the classifier results on a single sample.
// Returns true if debug is true and a CT_UNICHAR_TOPN_ERR error occurred.
// boosting_mode selects the type of error to be used for boosting and the
// is_error_ member of sample is set according to whether the required type
// of error occurred. The font_table provides access to font properties
// for error counting and shape_table is used to understand the relationship
// between unichar_ids and shape_ids in the results
bool ErrorCounter::AccumulateErrors(bool debug, CountTypes boosting_mode,
const FontInfoTable& font_table,
const GenericVector<UnicharRating>& results,
TrainingSample* sample) {
int num_results = results.size();
int answer_actual_rank = -1;
int font_id = sample->font_id();
int unichar_id = sample->class_id();
sample->set_is_error(false);
if (num_results == 0) {
// Reject. We count rejects as a separate category, but still mark the
// sample as an error in case any training module wants to use that to
// improve the classifier.
sample->set_is_error(true);
++font_counts_[font_id].n[CT_REJECT];
} else {
// Find rank of correct unichar answer, using rating_epsilon_ to allow
// different answers to score as equal. (Ignoring the font.)
int epsilon_rank = 0;
int answer_epsilon_rank = -1;
int num_top_answers = 0;
double prev_rating = results[0].rating;
bool joined = false;
bool broken = false;
int res_index = 0;
while (res_index < num_results) {
if (results[res_index].rating < prev_rating - rating_epsilon_) {
++epsilon_rank;
prev_rating = results[res_index].rating;
}
if (results[res_index].unichar_id == unichar_id &&
answer_epsilon_rank < 0) {
answer_epsilon_rank = epsilon_rank;
answer_actual_rank = res_index;
}
if (results[res_index].unichar_id == UNICHAR_JOINED &&
unicharset_.has_special_codes())
joined = true;
else if (results[res_index].unichar_id == UNICHAR_BROKEN &&
unicharset_.has_special_codes())
broken = true;
else if (epsilon_rank == 0)
++num_top_answers;
++res_index;
}
if (answer_actual_rank != 0) {
// Correct result is not absolute top.
++font_counts_[font_id].n[CT_UNICHAR_TOPTOP_ERR];
if (boosting_mode == CT_UNICHAR_TOPTOP_ERR) sample->set_is_error(true);
}
if (answer_epsilon_rank == 0) {
++font_counts_[font_id].n[CT_UNICHAR_TOP_OK];
// Unichar OK, but count if multiple unichars.
if (num_top_answers > 1) {
++font_counts_[font_id].n[CT_OK_MULTI_UNICHAR];
++multi_unichar_counts_[unichar_id];
}
// Check to see if any font in the top choice has attributes that match.
// TODO(rays) It is easy to add counters for individual font attributes
// here if we want them.
if (font_table.SetContainsFontProperties(
font_id, results[answer_actual_rank].fonts)) {
// Font attributes were matched.
// Check for multiple properties.
if (font_table.SetContainsMultipleFontProperties(
results[answer_actual_rank].fonts))
++font_counts_[font_id].n[CT_OK_MULTI_FONT];
} else {
// Font attributes weren't matched.
++font_counts_[font_id].n[CT_FONT_ATTR_ERR];
}
} else {
// This is a top unichar error.
++font_counts_[font_id].n[CT_UNICHAR_TOP1_ERR];
if (boosting_mode == CT_UNICHAR_TOP1_ERR) sample->set_is_error(true);
// Count maps from unichar id to wrong unichar id.
++unichar_counts_(unichar_id, results[0].unichar_id);
if (answer_epsilon_rank < 0 || answer_epsilon_rank >= 2) {
// It is also a 2nd choice unichar error.
++font_counts_[font_id].n[CT_UNICHAR_TOP2_ERR];
if (boosting_mode == CT_UNICHAR_TOP2_ERR) sample->set_is_error(true);
}
if (answer_epsilon_rank < 0) {
// It is also a top-n choice unichar error.
++font_counts_[font_id].n[CT_UNICHAR_TOPN_ERR];
if (boosting_mode == CT_UNICHAR_TOPN_ERR) sample->set_is_error(true);
answer_epsilon_rank = epsilon_rank;
}
}
// Compute mean number of return values and mean rank of correct answer.
font_counts_[font_id].n[CT_NUM_RESULTS] += num_results;
font_counts_[font_id].n[CT_RANK] += answer_epsilon_rank;
if (joined)
++font_counts_[font_id].n[CT_OK_JOINED];
if (broken)
++font_counts_[font_id].n[CT_OK_BROKEN];
}
// If it was an error for boosting then sum the weight.
if (sample->is_error()) {
scaled_error_ += sample->weight();
if (debug) {
tprintf("%d results for char %s font %d :",
num_results, unicharset_.id_to_unichar(unichar_id),
font_id);
for (int i = 0; i < num_results; ++i) {
tprintf(" %.3f : %s\n",
results[i].rating,
unicharset_.id_to_unichar(results[i].unichar_id));
}
return true;
}
int percent = 0;
if (num_results > 0)
percent = IntCastRounded(results[0].rating * 100);
bad_score_hist_.add(percent, 1);
} else {
int percent = 0;
if (answer_actual_rank >= 0)
percent = IntCastRounded(results[answer_actual_rank].rating * 100);
ok_score_hist_.add(percent, 1);
}
return false;
}
// Accumulates counts for junk. Counts only whether the junk was correctly
// rejected or not.
bool ErrorCounter::AccumulateJunk(bool debug,
const GenericVector<UnicharRating>& results,
TrainingSample* sample) {
// For junk we accept no answer, or an explicit shape answer matching the
// class id of the sample.
const int num_results = results.size();
const int font_id = sample->font_id();
const int unichar_id = sample->class_id();
int percent = 0;
if (num_results > 0)
percent = IntCastRounded(results[0].rating * 100);
if (num_results > 0 && results[0].unichar_id != unichar_id) {
// This is a junk error.
++font_counts_[font_id].n[CT_ACCEPTED_JUNK];
sample->set_is_error(true);
// It counts as an error for boosting too so sum the weight.
scaled_error_ += sample->weight();
bad_score_hist_.add(percent, 1);
return debug;
} else {
// Correctly rejected.
++font_counts_[font_id].n[CT_REJECTED_JUNK];
sample->set_is_error(false);
ok_score_hist_.add(percent, 1);
}
return false;
}
// Creates a report of the error rate. The report_level controls the detail
// that is reported to stderr via tprintf:
// 0 -> no output.
// >=1 -> bottom-line error rate.
// >=3 -> font-level error rate.
// boosting_mode determines the return value. It selects which (un-weighted)
// error rate to return.
// The fontinfo_table from MasterTrainer provides the names of fonts.
// The it determines the current subset of the training samples.
// If not nullptr, the top-choice unichar error rate is saved in unichar_error.
// If not nullptr, the report string is saved in fonts_report.
// (Ignoring report_level).
double ErrorCounter::ReportErrors(int report_level, CountTypes boosting_mode,
const FontInfoTable& fontinfo_table,
const SampleIterator& it,
double* unichar_error,
STRING* fonts_report) {
// Compute totals over all the fonts and report individual font results
// when required.
Counts totals;
int fontsize = font_counts_.size();
for (int f = 0; f < fontsize; ++f) {
// Accumulate counts over fonts.
totals += font_counts_[f];
STRING font_report;
if (ReportString(false, font_counts_[f], &font_report)) {
if (fonts_report != nullptr) {
*fonts_report += fontinfo_table.get(f).name;
*fonts_report += ": ";
*fonts_report += font_report;
*fonts_report += "\n";
}
if (report_level > 2) {
// Report individual font error rates.
tprintf("%s: %s\n", fontinfo_table.get(f).name, font_report.string());
}
}
}
// Report the totals.
STRING total_report;
bool any_results = ReportString(true, totals, &total_report);
if (fonts_report != nullptr && fonts_report->length() == 0) {
// Make sure we return something even if there were no samples.
*fonts_report = "NoSamplesFound: ";
*fonts_report += total_report;
*fonts_report += "\n";
}
if (report_level > 0) {
// Report the totals.
STRING total_report;
if (any_results) {
tprintf("TOTAL Scaled Err=%.4g%%, %s\n",
scaled_error_ * 100.0, total_report.string());
}
// Report the worst substitution error only for now.
if (totals.n[CT_UNICHAR_TOP1_ERR] > 0) {
int charsetsize = unicharset_.size();
int worst_uni_id = 0;
int worst_result_id = 0;
int worst_err = 0;
for (int u = 0; u < charsetsize; ++u) {
for (int v = 0; v < charsetsize; ++v) {
if (unichar_counts_(u, v) > worst_err) {
worst_err = unichar_counts_(u, v);
worst_uni_id = u;
worst_result_id = v;
}
}
}
if (worst_err > 0) {
tprintf("Worst error = %d:%s -> %s with %d/%d=%.2f%% errors\n",
worst_uni_id, unicharset_.id_to_unichar(worst_uni_id),
unicharset_.id_to_unichar(worst_result_id),
worst_err, totals.n[CT_UNICHAR_TOP1_ERR],
100.0 * worst_err / totals.n[CT_UNICHAR_TOP1_ERR]);
}
}
tprintf("Multi-unichar shape use:\n");
for (int u = 0; u < multi_unichar_counts_.size(); ++u) {
if (multi_unichar_counts_[u] > 0) {
tprintf("%d multiple answers for unichar: %s\n",
multi_unichar_counts_[u],
unicharset_.id_to_unichar(u));
}
}
tprintf("OK Score histogram:\n");
ok_score_hist_.print();
tprintf("ERROR Score histogram:\n");
bad_score_hist_.print();
}
double rates[CT_SIZE];
if (!ComputeRates(totals, rates))
return 0.0;
// Set output values if asked for.
if (unichar_error != nullptr)
*unichar_error = rates[CT_UNICHAR_TOP1_ERR];
return rates[boosting_mode];
}
// Sets the report string to a combined human and machine-readable report
// string of the error rates.
// Returns false if there is no data, leaving report unchanged, unless
// even_if_empty is true.
bool ErrorCounter::ReportString(bool even_if_empty, const Counts& counts,
STRING* report) {
// Compute the error rates.
double rates[CT_SIZE];
if (!ComputeRates(counts, rates) && !even_if_empty)
return false;
// Using %.4g%%, the length of the output string should exactly match the
// length of the format string, but in case of overflow, allow for +eddd
// on each number.
const int kMaxExtraLength = 5; // Length of +eddd.
// Keep this format string and the snprintf in sync with the CountTypes enum.
const char* format_str = "Unichar=%.4g%%[1], %.4g%%[2], %.4g%%[n], %.4g%%[T] "
"Mult=%.4g%%, Jn=%.4g%%, Brk=%.4g%%, Rej=%.4g%%, "
"FontAttr=%.4g%%, Multi=%.4g%%, "
"Answers=%.3g, Rank=%.3g, "
"OKjunk=%.4g%%, Badjunk=%.4g%%";
const size_t max_str_len = strlen(format_str) + kMaxExtraLength * (CT_SIZE - 1) + 1;
char* formatted_str = new char[max_str_len];
snprintf(formatted_str, max_str_len, format_str,
rates[CT_UNICHAR_TOP1_ERR] * 100.0,
rates[CT_UNICHAR_TOP2_ERR] * 100.0,
rates[CT_UNICHAR_TOPN_ERR] * 100.0,
rates[CT_UNICHAR_TOPTOP_ERR] * 100.0,
rates[CT_OK_MULTI_UNICHAR] * 100.0,
rates[CT_OK_JOINED] * 100.0,
rates[CT_OK_BROKEN] * 100.0,
rates[CT_REJECT] * 100.0,
rates[CT_FONT_ATTR_ERR] * 100.0,
rates[CT_OK_MULTI_FONT] * 100.0,
rates[CT_NUM_RESULTS],
rates[CT_RANK],
100.0 * rates[CT_REJECTED_JUNK],
100.0 * rates[CT_ACCEPTED_JUNK]);
*report = formatted_str;
delete [] formatted_str;
// Now append each field of counts with a tab in front so the result can
// be loaded into a spreadsheet.
for (int ct : counts.n)
report->add_str_int("\t", ct);
return true;
}
// Computes the error rates and returns in rates which is an array of size
// CT_SIZE. Returns false if there is no data, leaving rates unchanged.
bool ErrorCounter::ComputeRates(const Counts& counts, double rates[CT_SIZE]) {
const int ok_samples = counts.n[CT_UNICHAR_TOP_OK] + counts.n[CT_UNICHAR_TOP1_ERR] +
counts.n[CT_REJECT];
const int junk_samples = counts.n[CT_REJECTED_JUNK] + counts.n[CT_ACCEPTED_JUNK];
// Compute rates for normal chars.
double denominator = static_cast<double>(std::max(ok_samples, 1));
for (int ct = 0; ct <= CT_RANK; ++ct)
rates[ct] = counts.n[ct] / denominator;
// Compute rates for junk.
denominator = static_cast<double>(std::max(junk_samples, 1));
for (int ct = CT_REJECTED_JUNK; ct <= CT_ACCEPTED_JUNK; ++ct)
rates[ct] = counts.n[ct] / denominator;
return ok_samples != 0 || junk_samples != 0;
}
ErrorCounter::Counts::Counts() {
memset(n, 0, sizeof(n[0]) * CT_SIZE);
}
// Adds other into this for computing totals.
void ErrorCounter::Counts::operator+=(const Counts& other) {
for (int ct = 0; ct < CT_SIZE; ++ct)
n[ct] += other.n[ct];
}
} // namespace tesseract.