tesseract/cube/cube_search_object.cpp

422 lines
13 KiB
C++
Raw Normal View History

/**********************************************************************
* File: cube_search_object.cpp
* Description: Implementation of the Cube Search Object Class
* Author: Ahmad Abdulkader
* Created: 2007
*
* (C) Copyright 2008, Google Inc.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "cube_search_object.h"
#include "cube_utils.h"
#include "ndminx.h"
namespace tesseract {
const bool CubeSearchObject::kUseCroppedChars = true;
CubeSearchObject::CubeSearchObject(CubeRecoContext *cntxt, CharSamp *samp)
: SearchObject(cntxt) {
init_ = false;
reco_cache_ = NULL;
samp_cache_ = NULL;
segments_ = NULL;
segment_cnt_ = 0;
samp_ = samp;
left_ = 0;
itop_ = 0;
space_cost_ = NULL;
no_space_cost_ = NULL;
wid_ = samp_->Width();
hgt_ = samp_->Height();
max_seg_per_char_ = cntxt_->Params()->MaxSegPerChar();
rtl_ = (cntxt_->ReadingOrder() == CubeRecoContext::R2L);
min_spc_gap_ =
static_cast<int>(hgt_ * cntxt_->Params()->MinSpaceHeightRatio());
max_spc_gap_ =
static_cast<int>(hgt_ * cntxt_->Params()->MaxSpaceHeightRatio());
}
CubeSearchObject::~CubeSearchObject() {
Cleanup();
}
// Cleanup
void CubeSearchObject::Cleanup() {
// delete Recognition Cache
if (reco_cache_) {
for (int strt_seg = 0; strt_seg < segment_cnt_; strt_seg++) {
if (reco_cache_[strt_seg]) {
for (int end_seg = 0; end_seg < segment_cnt_; end_seg++) {
if (reco_cache_[strt_seg][end_seg]) {
delete reco_cache_[strt_seg][end_seg];
}
}
delete []reco_cache_[strt_seg];
}
}
delete []reco_cache_;
reco_cache_ = NULL;
}
// delete CharSamp Cache
if (samp_cache_) {
for (int strt_seg = 0; strt_seg < segment_cnt_; strt_seg++) {
if (samp_cache_[strt_seg]) {
for (int end_seg = 0; end_seg < segment_cnt_; end_seg++) {
if (samp_cache_[strt_seg][end_seg]) {
delete samp_cache_[strt_seg][end_seg];
}
}
delete []samp_cache_[strt_seg];
}
}
delete []samp_cache_;
samp_cache_ = NULL;
}
// delete segment list
if (segments_) {
for (int seg = 0; seg < segment_cnt_; seg++) {
if (segments_[seg]) {
delete segments_[seg];
}
}
delete []segments_;
segments_ = NULL;
}
if (space_cost_) {
delete []space_cost_;
space_cost_ = NULL;
}
if (no_space_cost_) {
delete []no_space_cost_;
no_space_cost_ = NULL;
}
segment_cnt_ = 0;
init_ = false;
}
// # of segmentation points. One less than the count of segments
int CubeSearchObject::SegPtCnt() {
if (!init_ && !Init())
return -1;
return segment_cnt_ - 1;
}
// init and allocate variables, perform segmentation
bool CubeSearchObject::Init() {
if (init_)
return true;
if (!Segment()) {
return false;
}
// init cache
reco_cache_ = new CharAltList **[segment_cnt_];
samp_cache_ = new CharSamp **[segment_cnt_];
for (int seg = 0; seg < segment_cnt_; seg++) {
reco_cache_[seg] = new CharAltList *[segment_cnt_];
memset(reco_cache_[seg], 0, segment_cnt_ * sizeof(*reco_cache_[seg]));
samp_cache_[seg] = new CharSamp *[segment_cnt_];
memset(samp_cache_[seg], 0, segment_cnt_ * sizeof(*samp_cache_[seg]));
}
init_ = true;
return true;
}
// returns a char sample corresponding to the bitmap between 2 seg pts
CharSamp *CubeSearchObject::CharSample(int start_pt, int end_pt) {
// init if necessary
if (!init_ && !Init())
return NULL;
// validate segment range
if (!IsValidSegmentRange(start_pt, end_pt))
return NULL;
// look for the samp in the cache
if (samp_cache_ && samp_cache_[start_pt + 1] &&
samp_cache_[start_pt + 1][end_pt]) {
return samp_cache_[start_pt + 1][end_pt];
}
// create a char samp object from the specified range of segments
bool left_most;
bool right_most;
CharSamp *samp = CharSamp::FromConComps(segments_, start_pt + 1,
end_pt - start_pt, NULL,
&left_most, &right_most, hgt_);
if (!samp)
return NULL;
if (kUseCroppedChars) {
CharSamp *cropped_samp = samp->Crop();
// we no longer need the orig sample
delete samp;
if (!cropped_samp)
return NULL;
samp = cropped_samp;
}
// get the dimensions of the new cropped sample
int char_top = samp->Top();
int char_wid = samp->Width();
int char_hgt = samp->Height();
// for cursive languages, these features correspond to whether
// the charsamp is at the beginning or end of conncomp
if (cntxt_->Cursive() == true) {
// first and last char flags depend on reading order
bool first_char = rtl_ ? right_most : left_most;
bool last_char = rtl_ ? left_most : right_most;
samp->SetFirstChar(first_char ? 255 : 0);
samp->SetLastChar(last_char ? 255 : 0);
} else {
// for non cursive languages, these features correspond
// to whether the charsamp is at the beginning or end of the word
samp->SetFirstChar((start_pt == -1) ? 255 : 0);
samp->SetLastChar((end_pt == (segment_cnt_ - 1)) ? 255 : 0);
}
samp->SetNormTop(255 * char_top / hgt_);
samp->SetNormBottom(255 * (char_top + char_hgt) / hgt_);
samp->SetNormAspectRatio(255 * char_wid / (char_wid + char_hgt));
// add to cache & return
samp_cache_[start_pt + 1][end_pt] = samp;
return samp;
}
Box *CubeSearchObject::CharBox(int start_pt, int end_pt) {
if (!init_ && !Init())
return NULL;
if (!IsValidSegmentRange(start_pt, end_pt)) {
fprintf(stderr, "Cube ERROR (CubeSearchObject::CharBox): invalid "
"segment range (%d, %d)\n", start_pt, end_pt);
return NULL;
}
// create a char samp object from the specified range of segments,
// extract its dimensions into a leptonica box, and delete it
bool left_most;
bool right_most;
CharSamp *samp = CharSamp::FromConComps(segments_, start_pt + 1,
end_pt - start_pt, NULL,
&left_most, &right_most, hgt_);
if (!samp)
return NULL;
if (kUseCroppedChars) {
CharSamp *cropped_samp = samp->Crop();
delete samp;
if (!cropped_samp) {
return NULL;
}
samp = cropped_samp;
}
Box *box = boxCreate(samp->Left(), samp->Top(),
samp->Width(), samp->Height());
delete samp;
return box;
}
// call from Beam Search to return the alt list corresponding to
// recognizing the bitmap between two segmentation pts
CharAltList * CubeSearchObject::RecognizeSegment(int start_pt, int end_pt) {
// init if necessary
if (!init_ && !Init()) {
fprintf(stderr, "Cube ERROR (CubeSearchObject::RecognizeSegment): could "
"not initialize CubeSearchObject\n");
return NULL;
}
// validate segment range
if (!IsValidSegmentRange(start_pt, end_pt)) {
fprintf(stderr, "Cube ERROR (CubeSearchObject::RecognizeSegment): invalid "
"segment range (%d, %d)\n", start_pt, end_pt);
return NULL;
}
// look for the recognition results in cache in the cache
if (reco_cache_ && reco_cache_[start_pt + 1] &&
reco_cache_[start_pt + 1][end_pt]) {
return reco_cache_[start_pt + 1][end_pt];
}
// create the char sample corresponding to the blob
CharSamp *samp = CharSample(start_pt, end_pt);
if (!samp) {
fprintf(stderr, "Cube ERROR (CubeSearchObject::RecognizeSegment): could "
"not construct CharSamp\n");
return NULL;
}
// recognize the char sample
CharClassifier *char_classifier = cntxt_->Classifier();
if (char_classifier) {
reco_cache_[start_pt + 1][end_pt] = char_classifier->Classify(samp);
} else {
// no classifer: all characters are equally probable; add a penalty
// that favors 2-segment characters and aspect ratios (w/h) > 1
fprintf(stderr, "Cube WARNING (CubeSearchObject::RecognizeSegment): cube "
"context has no character classifier!! Inventing a probability "
"distribution.\n");
int class_cnt = cntxt_->CharacterSet()->ClassCount();
CharAltList *alt_list = new CharAltList(cntxt_->CharacterSet(), class_cnt);
int seg_cnt = end_pt - start_pt;
double prob_val = (1.0 / class_cnt) *
exp(-fabs(seg_cnt - 2.0)) *
exp(-samp->Width() / static_cast<double>(samp->Height()));
for (int class_idx = 0; class_idx < class_cnt; class_idx++) {
alt_list->Insert(class_idx, CubeUtils::Prob2Cost(prob_val));
}
reco_cache_[start_pt + 1][end_pt] = alt_list;
}
return reco_cache_[start_pt + 1][end_pt];
}
// Perform segmentation of the bitmap by detecting connected components,
// segmenting each connected component using windowed vertical pixel density
// histogram and sorting the resulting segments in reading order
bool CubeSearchObject::Segment() {
if (!samp_)
return false;
segment_cnt_ = 0;
segments_ = samp_->Segment(&segment_cnt_, rtl_,
cntxt_->Params()->HistWindWid(),
cntxt_->Params()->MinConCompSize());
if (!segments_ || segment_cnt_ <= 0) {
return false;
}
if (segment_cnt_ >= kMaxSegmentCnt) {
return false;
}
return true;
}
// computes the space and no space costs at gaps between segments
bool CubeSearchObject::ComputeSpaceCosts() {
// init if necessary
if (!init_ && !Init())
return false;
// Already computed
if (space_cost_)
return true;
// No segmentation points
if (segment_cnt_ < 2)
return false;
// Compute the maximum x to the left of and minimum x to the right of each
// segmentation point
int *max_left_x = new int[segment_cnt_ - 1];
int *min_right_x = new int[segment_cnt_ - 1];
if (rtl_) {
min_right_x[0] = segments_[0]->Left();
max_left_x[segment_cnt_ - 2] = segments_[segment_cnt_ - 1]->Right();
for (int pt_idx = 1; pt_idx < (segment_cnt_ - 1); pt_idx++) {
min_right_x[pt_idx] =
MIN(min_right_x[pt_idx - 1], segments_[pt_idx]->Left());
max_left_x[segment_cnt_ - pt_idx - 2] =
MAX(max_left_x[segment_cnt_ - pt_idx - 1],
segments_[segment_cnt_ - pt_idx - 1]->Right());
}
} else {
min_right_x[segment_cnt_ - 2] = segments_[segment_cnt_ - 1]->Left();
max_left_x[0] = segments_[0]->Right();
for (int pt_idx = 1; pt_idx < (segment_cnt_ - 1); pt_idx++) {
min_right_x[segment_cnt_ - pt_idx - 2] =
MIN(min_right_x[segment_cnt_ - pt_idx - 1],
segments_[segment_cnt_ - pt_idx - 1]->Left());
max_left_x[pt_idx] =
MAX(max_left_x[pt_idx - 1], segments_[pt_idx]->Right());
}
}
// Allocate memory for space and no space costs
// trivial cases
space_cost_ = new int[segment_cnt_ - 1];
no_space_cost_ = new int[segment_cnt_ - 1];
// go through all segmentation points determining the horizontal gap between
// the images on both sides of each break points. Use the gap to estimate
// the probability of a space. The probability is modeled a linear function
// of the gap width
for (int pt_idx = 0; pt_idx < (segment_cnt_ - 1); pt_idx++) {
// determine the gap at the segmentation point
int gap = min_right_x[pt_idx] - max_left_x[pt_idx];
float prob = 0.0;
// gap is too small => no space
2016-11-30 16:35:35 +08:00
if (gap < min_spc_gap_ || max_spc_gap_ == min_spc_gap_) {
prob = 0.0;
} else if (gap > max_spc_gap_) {
// gap is too big => definite space
prob = 1.0;
} else {
// gap is somewhere in between, compute probability
prob = (gap - min_spc_gap_) /
static_cast<double>(max_spc_gap_ - min_spc_gap_);
}
// compute cost of space and non-space
space_cost_[pt_idx] = CubeUtils::Prob2Cost(prob) +
CubeUtils::Prob2Cost(0.1);
no_space_cost_[pt_idx] = CubeUtils::Prob2Cost(1.0 - prob);
}
delete []min_right_x;
delete []max_left_x;
return true;
}
// Returns the cost of having a space before the specified segmentation point
int CubeSearchObject::SpaceCost(int pt_idx) {
if (!space_cost_ && !ComputeSpaceCosts()) {
// Failed to compute costs return a zero prob
return CubeUtils::Prob2Cost(0.0);
}
return space_cost_[pt_idx];
}
// Returns the cost of not having a space before the specified
// segmentation point
int CubeSearchObject::NoSpaceCost(int pt_idx) {
// If failed to compute costs, return a 1.0 prob
if (!space_cost_ && !ComputeSpaceCosts())
return CubeUtils::Prob2Cost(0.0);
return no_space_cost_[pt_idx];
}
// Returns the cost of not having any spaces within the specified range
// of segmentation points
int CubeSearchObject::NoSpaceCost(int st_pt, int end_pt) {
// If fail to compute costs, return a 1.0 prob
if (!space_cost_ && !ComputeSpaceCosts())
return CubeUtils::Prob2Cost(1.0);
int no_spc_cost = 0;
for (int pt_idx = st_pt + 1; pt_idx < end_pt; pt_idx++)
no_spc_cost += NoSpaceCost(pt_idx);
return no_spc_cost;
}
}