tesseract/unittest/lang_model_test.cc

98 lines
4.1 KiB
C++
Raw Normal View History

#include "tesseract/training/lang_model_helpers.h"
#include "tesseract/lstm/lstmtrainer.h"
#include "tesseract/training/unicharset_training_utils.h"
namespace tesseract {
namespace {
string TestDataNameToPath(const string& name) {
return file::JoinPath(FLAGS_test_srcdir,
"testdata", name);
}
// This is an integration test that verifies that CombineLangModel works to
// the extent that an LSTMTrainer can be initialized with the result, and it
// can encode strings. More importantly, the test verifies that adding an extra
// character to the unicharset does not change the encoding of strings.
TEST(LangModelTest, AddACharacter) {
constexpr char kTestString[] = "Simple ASCII string to encode !@#$%&";
constexpr char kTestStringRupees[] = "ASCII string with Rupee symbol ₹";
// Setup the arguments.
string script_dir = file::JoinPath(FLAGS_test_srcdir, "langdata");
string eng_dir = file::JoinPath(script_dir, "eng");
string unicharset_path = TestDataNameToPath("eng_beam.unicharset");
UNICHARSET unicharset;
EXPECT_TRUE(unicharset.load_from_file(unicharset_path.c_str()));
string version_str = "TestVersion";
string output_dir = FLAGS_test_tmpdir;
LOG(INFO) << "Output dir=" << output_dir;
string lang1 = "eng";
bool pass_through_recoder = false;
GenericVector<STRING> words, puncs, numbers;
// If these reads fail, we get a warning message and an empty list of words.
ReadFile(file::JoinPath(eng_dir, "eng.wordlist"), nullptr)
.split('\n', &words);
EXPECT_GT(words.size(), 0);
ReadFile(file::JoinPath(eng_dir, "eng.punc"), nullptr).split('\n', &puncs);
EXPECT_GT(puncs.size(), 0);
ReadFile(file::JoinPath(eng_dir, "eng.numbers"), nullptr)
.split('\n', &numbers);
EXPECT_GT(numbers.size(), 0);
bool lang_is_rtl = false;
// Generate the traineddata file.
EXPECT_EQ(0, CombineLangModel(unicharset, script_dir, version_str, output_dir,
lang1, pass_through_recoder, words, puncs,
numbers, lang_is_rtl, nullptr, nullptr));
// Init a trainer with it, and encode a string.
string traineddata1 =
file::JoinPath(output_dir, lang1, absl::StrCat(lang1, ".traineddata"));
LSTMTrainer trainer1;
trainer1.InitCharSet(traineddata1);
GenericVector<int> labels1;
EXPECT_TRUE(trainer1.EncodeString(kTestString, &labels1));
// Add a new character to the unicharset and try again.
int size_before = unicharset.size();
unicharset.unichar_insert("");
SetupBasicProperties(/*report_errors*/ true, /*decompose (NFD)*/ false,
&unicharset);
EXPECT_EQ(size_before + 1, unicharset.size());
// Generate the traineddata file.
string lang2 = "extended";
EXPECT_EQ(EXIT_SUCCESS,
CombineLangModel(unicharset, script_dir, version_str, output_dir,
lang2, pass_through_recoder, words, puncs, numbers,
lang_is_rtl, nullptr, nullptr));
// Init a trainer with it, and encode a string.
string traineddata2 =
file::JoinPath(output_dir, lang2, absl::StrCat(lang2, ".traineddata"));
LSTMTrainer trainer2;
trainer2.InitCharSet(traineddata2);
GenericVector<int> labels2;
EXPECT_TRUE(trainer2.EncodeString(kTestString, &labels2));
// Copy labels1 to a std::vector, renumbering the null char to match trainer2.
// Since Tensor Flow's CTC implementation insists on having the null be the
// last label, and we want to be compatible, null has to be renumbered when
// we add a class.
int null1 = trainer1.null_char();
int null2 = trainer2.null_char();
EXPECT_EQ(null1 + 1, null2);
std::vector<int> labels1_v(labels1.size());
for (int i = 0; i < labels1.size(); ++i) {
if (labels1[i] == null1)
labels1_v[i] = null2;
else
labels1_v[i] = labels1[i];
}
EXPECT_THAT(labels1_v,
testing::ElementsAreArray(&labels2[0], labels2.size()));
// To make sure we weren't cheating somehow, we can now encode the Rupee
// symbol, which we could not do before.
EXPECT_FALSE(trainer1.EncodeString(kTestStringRupees, &labels1));
EXPECT_TRUE(trainer2.EncodeString(kTestStringRupees, &labels2));
}
} // namespace
} // namespace tesseract