tesseract/ccstruct/matrix.cpp

160 lines
5.6 KiB
C++
Raw Normal View History

/* -*-C-*-
********************************************************************************
*
* File: matrix.c (Formerly matrix.c)
* Description: Ratings matrix code. (Used by associator)
* Author: Mark Seaman, OCR Technology
* Created: Wed May 16 13:18:47 1990
* Modified: Wed Mar 20 09:44:47 1991 (Mark Seaman) marks@hpgrlt
* Language: C
* Package: N/A
* Status: Experimental (Do Not Distribute)
*
* (c) Copyright 1990, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
*********************************************************************************/
/*----------------------------------------------------------------------
I n c l u d e s
----------------------------------------------------------------------*/
#include "matrix.h"
#include "callcpp.h"
#include "ratngs.h"
#include "tprintf.h"
#include "unicharset.h"
// Returns true if there are any real classification results.
bool MATRIX::Classified(int col, int row, int wildcard_id) const {
if (get(col, row) == NOT_CLASSIFIED) return false;
BLOB_CHOICE_IT b_it(get(col, row));
for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
BLOB_CHOICE* choice = b_it.data();
if (choice->IsClassified())
return true;
}
return false;
}
// Expands the existing matrix in-place to make the band wider, without
// losing any existing data.
void MATRIX::IncreaseBandSize(int bandwidth) {
ResizeWithCopy(dimension(), bandwidth);
}
// Returns a bigger MATRIX with a new column and row in the matrix in order
// to split the blob at the given (ind,ind) diagonal location.
// Entries are relocated to the new MATRIX using the transformation defined
// by MATRIX_COORD::MapForSplit.
// Transfers the pointer data to the new MATRIX and deletes *this.
MATRIX* MATRIX::ConsumeAndMakeBigger(int ind) {
int dim = dimension();
int band_width = bandwidth();
// Check to see if bandwidth needs expanding.
for (int col = ind; col >= 0 && col > ind - band_width; --col) {
if (array_[col * band_width + band_width - 1] != empty_) {
++band_width;
break;
}
}
MATRIX* result = new MATRIX(dim + 1, band_width);
for (int col = 0; col < dim; ++col) {
for (int row = col; row < dim && row < col + bandwidth(); ++row) {
MATRIX_COORD coord(col, row);
coord.MapForSplit(ind);
BLOB_CHOICE_LIST* choices = get(col, row);
if (choices != NULL) {
// Correct matrix location on each choice.
BLOB_CHOICE_IT bc_it(choices);
for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) {
BLOB_CHOICE* choice = bc_it.data();
choice->set_matrix_cell(coord.col, coord.row);
}
ASSERT_HOST(coord.Valid(*result));
result->put(coord.col, coord.row, choices);
}
}
}
delete this;
return result;
}
// Makes and returns a deep copy of *this, including all the BLOB_CHOICEs
// on the lists, but not any LanguageModelState that may be attached to the
// BLOB_CHOICEs.
MATRIX* MATRIX::DeepCopy() const {
int dim = dimension();
int band_width = bandwidth();
MATRIX* result = new MATRIX(dim, band_width);
for (int col = 0; col < dim; ++col) {
for (int row = col; row < col + band_width; ++row) {
BLOB_CHOICE_LIST* choices = get(col, row);
if (choices != NULL) {
BLOB_CHOICE_LIST* copy_choices = new BLOB_CHOICE_LIST;
choices->deep_copy(copy_choices, &BLOB_CHOICE::deep_copy);
result->put(col, row, copy_choices);
}
}
}
return result;
}
// Print the best guesses out of the match rating matrix.
void MATRIX::print(const UNICHARSET &unicharset) const {
tprintf("Ratings Matrix (top 3 choices)\n");
int dim = dimension();
int band_width = bandwidth();
int row, col;
for (col = 0; col < dim; ++col) {
for (row = col; row < dim && row < col + band_width; ++row) {
BLOB_CHOICE_LIST *rating = this->get(col, row);
if (rating == NOT_CLASSIFIED) continue;
BLOB_CHOICE_IT b_it(rating);
tprintf("col=%d row=%d ", col, row);
for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
tprintf("%s rat=%g cert=%g " ,
unicharset.id_to_unichar(b_it.data()->unichar_id()),
b_it.data()->rating(), b_it.data()->certainty());
}
tprintf("\n");
}
tprintf("\n");
}
tprintf("\n");
for (col = 0; col < dim; ++col) tprintf("\t%d", col);
tprintf("\n");
for (row = 0; row < dim; ++row) {
for (col = 0; col <= row; ++col) {
if (col == 0) tprintf("%d\t", row);
if (row >= col + band_width) {
tprintf(" \t");
continue;
}
BLOB_CHOICE_LIST *rating = this->get(col, row);
if (rating != NOT_CLASSIFIED) {
BLOB_CHOICE_IT b_it(rating);
int counter = 0;
for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
tprintf("%s ",
unicharset.id_to_unichar(b_it.data()->unichar_id()));
++counter;
if (counter == 3) break;
}
tprintf("\t");
} else {
tprintf(" \t");
}
}
tprintf("\n");
}
}