mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-18 14:41:36 +08:00
108 lines
4.5 KiB
C
108 lines
4.5 KiB
C
|
///////////////////////////////////////////////////////////////////////
|
||
|
// File: input.h
|
||
|
// Description: Input layer class for neural network implementations.
|
||
|
// Author: Ray Smith
|
||
|
// Created: Thu Mar 13 08:56:26 PDT 2014
|
||
|
//
|
||
|
// (C) Copyright 2014, Google Inc.
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
///////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
#ifndef TESSERACT_LSTM_INPUT_H_
|
||
|
#define TESSERACT_LSTM_INPUT_H_
|
||
|
|
||
|
#include "network.h"
|
||
|
|
||
|
class ScrollView;
|
||
|
|
||
|
namespace tesseract {
|
||
|
|
||
|
class Input : public Network {
|
||
|
public:
|
||
|
Input(const STRING& name, int ni, int no);
|
||
|
Input(const STRING& name, const StaticShape& shape);
|
||
|
virtual ~Input();
|
||
|
|
||
|
virtual STRING spec() const {
|
||
|
STRING spec;
|
||
|
spec.add_str_int("", shape_.batch());
|
||
|
spec.add_str_int(",", shape_.height());
|
||
|
spec.add_str_int(",", shape_.width());
|
||
|
spec.add_str_int(",", shape_.depth());
|
||
|
return spec;
|
||
|
}
|
||
|
|
||
|
// Returns the required shape input to the network.
|
||
|
virtual StaticShape InputShape() const { return shape_; }
|
||
|
// Returns the shape output from the network given an input shape (which may
|
||
|
// be partially unknown ie zero).
|
||
|
virtual StaticShape OutputShape(const StaticShape& input_shape) const {
|
||
|
return shape_;
|
||
|
}
|
||
|
// Writes to the given file. Returns false in case of error.
|
||
|
// Should be overridden by subclasses, but called by their Serialize.
|
||
|
virtual bool Serialize(TFile* fp) const;
|
||
|
// Reads from the given file. Returns false in case of error.
|
||
|
// If swap is true, assumes a big/little-endian swap is needed.
|
||
|
// Should be overridden by subclasses, but NOT called by their DeSerialize.
|
||
|
virtual bool DeSerialize(bool swap, TFile* fp);
|
||
|
|
||
|
// Returns an integer reduction factor that the network applies to the
|
||
|
// time sequence. Assumes that any 2-d is already eliminated. Used for
|
||
|
// scaling bounding boxes of truth data.
|
||
|
// WARNING: if GlobalMinimax is used to vary the scale, this will return
|
||
|
// the last used scale factor. Call it before any forward, and it will return
|
||
|
// the minimum scale factor of the paths through the GlobalMinimax.
|
||
|
virtual int XScaleFactor() const;
|
||
|
|
||
|
// Provides the (minimum) x scale factor to the network (of interest only to
|
||
|
// input units) so they can determine how to scale bounding boxes.
|
||
|
virtual void CacheXScaleFactor(int factor);
|
||
|
|
||
|
// Runs forward propagation of activations on the input line.
|
||
|
// See Network for a detailed discussion of the arguments.
|
||
|
virtual void Forward(bool debug, const NetworkIO& input,
|
||
|
const TransposedArray* input_transpose,
|
||
|
NetworkScratch* scratch, NetworkIO* output);
|
||
|
|
||
|
// Runs backward propagation of errors on the deltas line.
|
||
|
// See Network for a detailed discussion of the arguments.
|
||
|
virtual bool Backward(bool debug, const NetworkIO& fwd_deltas,
|
||
|
NetworkScratch* scratch,
|
||
|
NetworkIO* back_deltas);
|
||
|
// Creates and returns a Pix of appropriate size for the network from the
|
||
|
// image_data. If non-null, *image_scale returns the image scale factor used.
|
||
|
// Returns nullptr on error.
|
||
|
/* static */
|
||
|
static Pix* PrepareLSTMInputs(const ImageData& image_data,
|
||
|
const Network* network, int min_width,
|
||
|
TRand* randomizer, float* image_scale);
|
||
|
// Converts the given pix to a NetworkIO of height and depth appropriate to
|
||
|
// the given StaticShape:
|
||
|
// If depth == 3, convert to 24 bit color, otherwise normalized grey.
|
||
|
// Scale to target height, if the shape's height is > 1, or its depth if the
|
||
|
// height == 1. If height == 0 then no scaling.
|
||
|
// NOTE: It isn't safe for multiple threads to call this on the same pix.
|
||
|
static void PreparePixInput(const StaticShape& shape, const Pix* pix,
|
||
|
TRand* randomizer, NetworkIO* input);
|
||
|
|
||
|
private:
|
||
|
// Input shape determines how images are dealt with.
|
||
|
StaticShape shape_;
|
||
|
// Cached total network x scale factor for scaling bounding boxes.
|
||
|
int cached_x_scale_;
|
||
|
};
|
||
|
|
||
|
} // namespace tesseract.
|
||
|
|
||
|
#endif // TESSERACT_LSTM_INPUT_H_
|
||
|
|