tesseract/ccutil/unicharset.cpp

1087 lines
39 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// File: unicharset.cpp
// Description: Unicode character/ligature set class.
// Author: Thomas Kielbus
// Created: Wed Jun 28 17:05:01 PDT 2006
//
// (C) Copyright 2006, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "unicharset.h"
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "params.h"
#include "serialis.h"
#include "tesscallback.h"
#include "tprintf.h"
#include "unichar.h"
// Special character used in representing character fragments.
static const char kSeparator = '|';
// Special character used in representing 'natural' character fragments.
static const char kNaturalFlag = 'n';
static const int ISALPHA_MASK = 0x1;
static const int ISLOWER_MASK = 0x2;
static const int ISUPPER_MASK = 0x4;
static const int ISDIGIT_MASK = 0x8;
static const int ISPUNCTUATION_MASK = 0x10;
// Y coordinate threshold for determining cap-height vs x-height.
// TODO(rays) Bring the global definition down to the ccutil library level,
// so this constant is relative to some other constants.
static const int kMeanlineThreshold = 220;
// Let C be the number of alpha chars for which all tops exceed
// kMeanlineThreshold, and X the number of alpha chars for which all
// tops are below kMeanlineThreshold, then if X > C *
// kMinXHeightFraction and C > X * kMinCapHeightFraction or more than
// half the alpha characters have upper or lower case, then the
// unicharset "has x-height".
const double kMinXHeightFraction = 0.25;
const double kMinCapHeightFraction = 0.05;
/*static */
const char* UNICHARSET::kCustomLigatures[][2] = {
{"ct", "\uE003"}, // c + t -> U+E003
{"ſh", "\uE006"}, // long-s + h -> U+E006
{"ſi", "\uE007"}, // long-s + i -> U+E007
{"ſl", "\uE008"}, // long-s + l -> U+E008
{"ſſ", "\uE009"}, // long-s + long-s -> U+E009
{NULL, NULL}
};
// List of strings for the SpecialUnicharCodes. Keep in sync with the enum.
const char* UNICHARSET::kSpecialUnicharCodes[SPECIAL_UNICHAR_CODES_COUNT] = {
" ",
"Joined",
"|Broken|0|1"
};
UNICHARSET::UNICHAR_PROPERTIES::UNICHAR_PROPERTIES() {
Init();
}
// Initialize all properties to sensible default values.
void UNICHARSET::UNICHAR_PROPERTIES::Init() {
isalpha = false;
islower = false;
isupper = false;
isdigit = false;
ispunctuation = false;
isngram = false;
enabled = false;
SetRangesOpen();
script_id = 0;
other_case = 0;
mirror = 0;
normed = "";
direction = UNICHARSET::U_LEFT_TO_RIGHT;
fragment = NULL;
}
// Sets all ranges wide open. Initialization default in case there are
// no useful values available.
void UNICHARSET::UNICHAR_PROPERTIES::SetRangesOpen() {
min_bottom = 0;
max_bottom = MAX_UINT8;
min_top = 0;
max_top = MAX_UINT8;
width = 0.0f;
width_sd = 0.0f;
bearing = 0.0f;
bearing_sd = 0.0f;
advance = 0.0f;
advance_sd = 0.0f;
}
// Sets all ranges to empty. Used before expanding with font-based data.
void UNICHARSET::UNICHAR_PROPERTIES::SetRangesEmpty() {
min_bottom = MAX_UINT8;
max_bottom = 0;
min_top = MAX_UINT8;
max_top = 0;
width = 0.0f;
width_sd = 0.0f;
bearing = 0.0f;
bearing_sd = 0.0f;
advance = 0.0f;
advance_sd = 0.0f;
}
// Returns true if any of the top/bottom/width/bearing/advance ranges/stats
// is emtpy.
bool UNICHARSET::UNICHAR_PROPERTIES::AnyRangeEmpty() const {
return width == 0.0f || advance == 0.0f;
}
// Expands the ranges with the ranges from the src properties.
void UNICHARSET::UNICHAR_PROPERTIES::ExpandRangesFrom(
const UNICHAR_PROPERTIES& src) {
UpdateRange(src.min_bottom, &min_bottom, &max_bottom);
UpdateRange(src.max_bottom, &min_bottom, &max_bottom);
UpdateRange(src.min_top, &min_top, &max_top);
UpdateRange(src.max_top, &min_top, &max_top);
if (src.width_sd > width_sd) {
width = src.width;
width_sd = src.width_sd;
}
if (src.bearing_sd > bearing_sd) {
bearing = src.bearing;
bearing_sd = src.bearing_sd;
}
if (src.advance_sd > advance_sd) {
advance = src.advance;
advance_sd = src.advance_sd;
}
}
// Copies the properties from src into this.
void UNICHARSET::UNICHAR_PROPERTIES::CopyFrom(const UNICHAR_PROPERTIES& src) {
// Apart from the fragment, everything else can be done with a default copy.
CHAR_FRAGMENT* saved_fragment = fragment;
*this = src; // Bitwise copy.
fragment = saved_fragment;
}
UNICHARSET::UNICHARSET() :
unichars(NULL),
ids(),
size_used(0),
size_reserved(0),
script_table(NULL),
script_table_size_used(0),
null_script("NULL") {
clear();
for (int i = 0; i < SPECIAL_UNICHAR_CODES_COUNT; ++i) {
unichar_insert(kSpecialUnicharCodes[i]);
if (i == UNICHAR_JOINED)
set_isngram(i, true);
}
}
UNICHARSET::~UNICHARSET() {
clear();
}
void UNICHARSET::reserve(int unichars_number) {
if (unichars_number > size_reserved) {
UNICHAR_SLOT* unichars_new = new UNICHAR_SLOT[unichars_number];
for (int i = 0; i < size_used; ++i)
unichars_new[i] = unichars[i];
for (int j = size_used; j < unichars_number; ++j) {
unichars_new[j].properties.script_id = add_script(null_script);
}
delete[] unichars;
unichars = unichars_new;
size_reserved = unichars_number;
}
}
UNICHAR_ID
UNICHARSET::unichar_to_id(const char* const unichar_repr) const {
return ids.contains(unichar_repr) ?
ids.unichar_to_id(unichar_repr) : INVALID_UNICHAR_ID;
}
UNICHAR_ID UNICHARSET::unichar_to_id(const char* const unichar_repr,
int length) const {
assert(length > 0 && length <= UNICHAR_LEN);
return ids.contains(unichar_repr, length) ?
ids.unichar_to_id(unichar_repr, length) : INVALID_UNICHAR_ID;
}
// Return the minimum number of bytes that matches a legal UNICHAR_ID,
// while leaving the rest of the string encodable. Returns 0 if the
// beginning of the string is not encodable.
// WARNING: this function now encodes the whole string for precision.
// Use encode_string in preference to repeatedly calling step.
int UNICHARSET::step(const char* str) const {
GenericVector<UNICHAR_ID> encoding;
GenericVector<char> lengths;
encode_string(str, true, &encoding, &lengths, NULL);
if (encoding.empty() || encoding[0] == INVALID_UNICHAR_ID) return 0;
return lengths[0];
}
// Return whether the given UTF-8 string is encodable with this UNICHARSET.
// If not encodable, write the first byte offset which cannot be converted
// into the second (return) argument.
bool UNICHARSET::encodable_string(const char *str,
int *first_bad_position) const {
GenericVector<UNICHAR_ID> encoding;
return encode_string(str, true, &encoding, NULL, first_bad_position);
}
// Encodes the given UTF-8 string with this UNICHARSET.
// Returns true if the encoding succeeds completely, false if there is at
// least one INVALID_UNICHAR_ID in the returned encoding, but in this case
// the rest of the string is still encoded.
// If lengths is not NULL, then it is filled with the corresponding
// byte length of each encoded UNICHAR_ID.
bool UNICHARSET::encode_string(const char* str, bool give_up_on_failure,
GenericVector<UNICHAR_ID>* encoding,
GenericVector<char>* lengths,
int* encoded_length) const {
GenericVector<UNICHAR_ID> working_encoding;
GenericVector<char> working_lengths;
GenericVector<char> best_lengths;
encoding->truncate(0); // Just in case str is empty.
int str_length = strlen(str);
int str_pos = 0;
bool perfect = true;
while (str_pos < str_length) {
encode_string(str, str_pos, str_length, &working_encoding, &working_lengths,
&str_pos, encoding, &best_lengths);
if (str_pos < str_length) {
// This is a non-match. Skip one utf-8 character.
perfect = false;
if (give_up_on_failure) break;
int step = UNICHAR::utf8_step(str + str_pos);
if (step == 0) step = 1;
encoding->push_back(INVALID_UNICHAR_ID);
best_lengths.push_back(step);
str_pos += step;
working_encoding = *encoding;
working_lengths = best_lengths;
}
}
if (lengths != NULL) *lengths = best_lengths;
if (encoded_length != NULL) *encoded_length = str_pos;
return perfect;
}
const char* UNICHARSET::id_to_unichar(UNICHAR_ID id) const {
if (id == INVALID_UNICHAR_ID) {
return INVALID_UNICHAR;
}
ASSERT_HOST(id < this->size());
return unichars[id].representation;
}
const char* UNICHARSET::id_to_unichar_ext(UNICHAR_ID id) const {
if (id == INVALID_UNICHAR_ID) {
return INVALID_UNICHAR;
}
ASSERT_HOST(id < this->size());
// Resolve from the kCustomLigatures table if this is a private encoding.
if (get_isprivate(id)) {
const char* ch = id_to_unichar(id);
for (int i = 0; kCustomLigatures[i][0] != NULL; ++i) {
if (!strcmp(ch, kCustomLigatures[i][1])) {
return kCustomLigatures[i][0];
}
}
}
// Otherwise return the stored representation.
return unichars[id].representation;
}
// Return a STRING that reformats the utf8 str into the str followed
// by its hex unicodes.
STRING UNICHARSET::debug_utf8_str(const char* str) {
STRING result = str;
result += " [";
int step = 1;
// Chop into unicodes and code each as hex.
for (int i = 0; str[i] != '\0'; i += step) {
char hex[sizeof(int) * 2 + 1];
step = UNICHAR::utf8_step(str + i);
if (step == 0) {
step = 1;
sprintf(hex, "%x", str[i]);
} else {
UNICHAR ch(str + i, step);
sprintf(hex, "%x", ch.first_uni());
}
result += hex;
result += " ";
}
result += "]";
return result;
}
// Return a STRING containing debug information on the unichar, including
// the id_to_unichar, its hex unicodes and the properties.
STRING UNICHARSET::debug_str(UNICHAR_ID id) const {
if (id == INVALID_UNICHAR_ID) return STRING(id_to_unichar(id));
const CHAR_FRAGMENT *fragment = this->get_fragment(id);
if (fragment) {
return fragment->to_string();
}
const char* str = id_to_unichar(id);
STRING result = debug_utf8_str(str);
// Append a for lower alpha, A for upper alpha, and x if alpha but neither.
if (get_isalpha(id)) {
if (get_islower(id))
result += "a";
else if (get_isupper(id))
result += "A";
else
result += "x";
}
// Append 0 if a digit.
if (get_isdigit(id)) {
result += "0";
}
// Append p is a punctuation symbol.
if (get_ispunctuation(id)) {
result += "p";
}
return result;
}
// Sets the normed_ids vector from the normed string. normed_ids is not
// stored in the file, and needs to be set when the UNICHARSET is loaded.
void UNICHARSET::set_normed_ids(UNICHAR_ID unichar_id) {
unichars[unichar_id].properties.normed_ids.truncate(0);
if (unichar_id == UNICHAR_SPACE && id_to_unichar(unichar_id)[0] == ' ') {
unichars[unichar_id].properties.normed_ids.push_back(UNICHAR_SPACE);
} else if (!encode_string(unichars[unichar_id].properties.normed.string(),
true, &unichars[unichar_id].properties.normed_ids,
NULL, NULL)) {
unichars[unichar_id].properties.normed_ids.truncate(0);
unichars[unichar_id].properties.normed_ids.push_back(unichar_id);
}
}
// Returns whether the unichar id represents a unicode value in the private use
// area. We use this range only internally to represent uncommon ligatures
// (eg. 'ct') that do not have regular unicode values.
bool UNICHARSET::get_isprivate(UNICHAR_ID unichar_id) const {
UNICHAR uc(id_to_unichar(unichar_id), -1);
int uni = uc.first_uni();
return (uni >= 0xE000 && uni <= 0xF8FF);
}
// Sets all ranges to empty, so they can be expanded to set the values.
void UNICHARSET::set_ranges_empty() {
for (int id = 0; id < size_used; ++id) {
unichars[id].properties.SetRangesEmpty();
}
}
// Sets all the properties for this unicharset given a src unicharset with
// everything set. The unicharsets don't have to be the same, and graphemes
// are correctly accounted for.
void UNICHARSET::PartialSetPropertiesFromOther(int start_index,
const UNICHARSET& src) {
for (int ch = start_index; ch < size_used; ++ch) {
const char* utf8 = id_to_unichar(ch);
UNICHAR_PROPERTIES properties;
if (src.GetStrProperties(utf8, &properties)) {
// Setup the script_id, other_case, and mirror properly.
const char* script = src.get_script_from_script_id(properties.script_id);
properties.script_id = add_script(script);
const char* other_case = src.id_to_unichar(properties.other_case);
if (contains_unichar(other_case)) {
properties.other_case = unichar_to_id(other_case);
} else {
properties.other_case = ch;
}
const char* mirror_str = src.id_to_unichar(properties.mirror);
if (contains_unichar(mirror_str)) {
properties.mirror = unichar_to_id(mirror_str);
} else {
properties.mirror = ch;
}
unichars[ch].properties.CopyFrom(properties);
set_normed_ids(ch);
}
}
}
// Expands the tops and bottoms and widths for this unicharset given a
// src unicharset with ranges in it. The unicharsets don't have to be the
// same, and graphemes are correctly accounted for.
void UNICHARSET::ExpandRangesFromOther(const UNICHARSET& src) {
for (int ch = 0; ch < size_used; ++ch) {
const char* utf8 = id_to_unichar(ch);
UNICHAR_PROPERTIES properties;
if (src.GetStrProperties(utf8, &properties)) {
// Expand just the ranges from properties.
unichars[ch].properties.ExpandRangesFrom(properties);
}
}
}
// Makes this a copy of src. Clears this completely first, so the automatic
// ids will not be present in this if not in src. Does NOT reorder the set!
void UNICHARSET::CopyFrom(const UNICHARSET& src) {
clear();
for (int ch = 0; ch < src.size_used; ++ch) {
const UNICHAR_PROPERTIES& src_props = src.unichars[ch].properties;
const char* utf8 = src.id_to_unichar(ch);
unichar_insert(utf8);
unichars[ch].properties.ExpandRangesFrom(src_props);
}
// Set properties, including mirror and other_case, WITHOUT reordering
// the unicharset.
PartialSetPropertiesFromOther(0, src);
}
// For each id in src, if it does not occur in this, add it, as in
// SetPropertiesFromOther, otherwise expand the ranges, as in
// ExpandRangesFromOther.
void UNICHARSET::AppendOtherUnicharset(const UNICHARSET& src) {
int initial_used = size_used;
for (int ch = 0; ch < src.size_used; ++ch) {
const UNICHAR_PROPERTIES& src_props = src.unichars[ch].properties;
const char* utf8 = src.id_to_unichar(ch);
if (ch >= SPECIAL_UNICHAR_CODES_COUNT && src_props.AnyRangeEmpty()) {
// Only use fully valid entries.
tprintf("Bad properties for index %d, char %s: "
"%d,%d %d,%d %g,%g %g,%g %g,%g\n",
ch, utf8, src_props.min_bottom, src_props.max_bottom,
src_props.min_top, src_props.max_top,
src_props.width, src_props.width_sd,
src_props.bearing, src_props.bearing_sd,
src_props.advance, src_props.advance_sd);
continue;
}
int id = size_used;
if (contains_unichar(utf8)) {
id = unichar_to_id(utf8);
// Just expand current ranges.
unichars[id].properties.ExpandRangesFrom(src_props);
} else {
unichar_insert(utf8);
unichars[id].properties.SetRangesEmpty();
}
}
// Set properties, including mirror and other_case, WITHOUT reordering
// the unicharset.
PartialSetPropertiesFromOther(initial_used, src);
}
// Returns true if the acceptable ranges of the tops of the characters do
// not overlap, making their x-height calculations distinct.
bool UNICHARSET::SizesDistinct(UNICHAR_ID id1, UNICHAR_ID id2) const {
int overlap = MIN(unichars[id1].properties.max_top,
unichars[id2].properties.max_top) -
MAX(unichars[id1].properties.min_top,
unichars[id2].properties.min_top);
return overlap <= 0;
}
// Internal recursive version of encode_string above.
// Seeks to encode the given string as a sequence of UNICHAR_IDs such that
// each UNICHAR_ID uses the least possible part of the utf8 str.
// It does this by depth-first tail recursion on increasing length matches
// to the UNICHARSET, saving the first encountered result that encodes the
// maximum total length of str. It stops on a failure to encode to make
// the overall process of encoding a partially failed string more efficient.
// See unicharset.h for definition of the args.
void UNICHARSET::encode_string(const char* str, int str_index, int str_length,
GenericVector<UNICHAR_ID>* encoding,
GenericVector<char>* lengths,
int* best_total_length,
GenericVector<UNICHAR_ID>* best_encoding,
GenericVector<char>* best_lengths) const {
if (str_index > *best_total_length) {
// This is the best result so far.
*best_total_length = str_index;
*best_encoding = *encoding;
if (best_lengths != NULL)
*best_lengths = *lengths;
}
if (str_index == str_length) return;
int encoding_index = encoding->size();
// Find the length of the first matching unicharset member.
int length = ids.minmatch(str + str_index);
if (length == 0 || str_index + length > str_length) return;
do {
if (ids.contains(str + str_index, length)) {
// Successful encoding so far.
UNICHAR_ID id = ids.unichar_to_id(str + str_index, length);
encoding->push_back(id);
lengths->push_back(length);
encode_string(str, str_index + length, str_length, encoding, lengths,
best_total_length, best_encoding, best_lengths);
if (*best_total_length == str_length)
return; // Tail recursion success!
// Failed with that length, truncate back and try again.
encoding->truncate(encoding_index);
lengths->truncate(encoding_index);
}
int step = UNICHAR::utf8_step(str + str_index + length);
if (step == 0) step = 1;
length += step;
} while (length <= UNICHAR_LEN && str_index + length <= str_length);
}
// Gets the properties for a grapheme string, combining properties for
// multiple characters in a meaningful way where possible.
// Returns false if no valid match was found in the unicharset.
// NOTE that script_id, mirror, and other_case refer to this unicharset on
// return and will need translation if the target unicharset is different.
bool UNICHARSET::GetStrProperties(const char* utf8_str,
UNICHAR_PROPERTIES* props) const {
props->Init();
props->SetRangesEmpty();
int total_unicodes = 0;
GenericVector<UNICHAR_ID> encoding;
if (!encode_string(utf8_str, true, &encoding, NULL, NULL))
return false; // Some part was invalid.
for (int i = 0; i < encoding.size(); ++i) {
int id = encoding[i];
const UNICHAR_PROPERTIES& src_props = unichars[id].properties;
// Logical OR all the bools.
if (src_props.isalpha) props->isalpha = true;
if (src_props.islower) props->islower = true;
if (src_props.isupper) props->isupper = true;
if (src_props.isdigit) props->isdigit = true;
if (src_props.ispunctuation) props->ispunctuation = true;
if (src_props.isngram) props->isngram = true;
if (src_props.enabled) props->enabled = true;
// Min/max the tops/bottoms.
UpdateRange(src_props.min_bottom, &props->min_bottom, &props->max_bottom);
UpdateRange(src_props.max_bottom, &props->min_bottom, &props->max_bottom);
UpdateRange(src_props.min_top, &props->min_top, &props->max_top);
UpdateRange(src_props.max_top, &props->min_top, &props->max_top);
float bearing = props->advance + src_props.bearing;
if (total_unicodes == 0 || bearing < props->bearing) {
props->bearing = bearing;
props->bearing_sd = props->advance_sd + src_props.bearing_sd;
}
props->advance += src_props.advance;
props->advance_sd += src_props.advance_sd;
// With a single width, just use the widths stored in the unicharset.
props->width = src_props.width;
props->width_sd = src_props.width_sd;
// Use the first script id, other_case, mirror, direction.
// Note that these will need translation, except direction.
if (total_unicodes == 0) {
props->script_id = src_props.script_id;
props->other_case = src_props.other_case;
props->mirror = src_props.mirror;
props->direction = src_props.direction;
}
// The normed string for the compound character is the concatenation of
// the normed versions of the individual characters.
props->normed += src_props.normed;
++total_unicodes;
}
if (total_unicodes > 1) {
// Estimate the total widths from the advance - bearing.
props->width = props->advance - props->bearing;
props->width_sd = props->advance_sd + props->bearing_sd;
}
return total_unicodes > 0;
}
// TODO(rays) clean-up the order of functions to match unicharset.h.
unsigned int UNICHARSET::get_properties(UNICHAR_ID id) const {
unsigned int properties = 0;
if (this->get_isalpha(id))
properties |= ISALPHA_MASK;
if (this->get_islower(id))
properties |= ISLOWER_MASK;
if (this->get_isupper(id))
properties |= ISUPPER_MASK;
if (this->get_isdigit(id))
properties |= ISDIGIT_MASK;
if (this->get_ispunctuation(id))
properties |= ISPUNCTUATION_MASK;
return properties;
}
char UNICHARSET::get_chartype(UNICHAR_ID id) const {
if (this->get_isupper(id)) return 'A';
if (this->get_islower(id)) return 'a';
if (this->get_isalpha(id)) return 'x';
if (this->get_isdigit(id)) return '0';
if (this->get_ispunctuation(id)) return 'p';
return 0;
}
void UNICHARSET::unichar_insert(const char* const unichar_repr) {
if (!ids.contains(unichar_repr)) {
if (strlen(unichar_repr) > UNICHAR_LEN) {
fprintf(stderr, "Utf8 buffer too big, size=%d for %s\n",
int(strlen(unichar_repr)), unichar_repr);
return;
}
if (size_used == size_reserved) {
if (size_used == 0)
reserve(8);
else
reserve(2 * size_used);
}
strcpy(unichars[size_used].representation, unichar_repr);
this->set_script(size_used, null_script);
// If the given unichar_repr represents a fragmented character, set
// fragment property to a pointer to CHAR_FRAGMENT class instance with
// information parsed from the unichar representation. Use the script
// of the base unichar for the fragmented character if possible.
CHAR_FRAGMENT *frag = CHAR_FRAGMENT::parse_from_string(unichar_repr);
this->unichars[size_used].properties.fragment = frag;
if (frag != NULL && this->contains_unichar(frag->get_unichar())) {
this->unichars[size_used].properties.script_id =
this->get_script(frag->get_unichar());
}
this->unichars[size_used].properties.enabled = true;
ids.insert(unichar_repr, size_used);
++size_used;
}
}
bool UNICHARSET::contains_unichar(const char* const unichar_repr) const {
return ids.contains(unichar_repr);
}
bool UNICHARSET::contains_unichar(const char* const unichar_repr,
int length) const {
if (length == 0) {
return false;
}
return ids.contains(unichar_repr, length);
}
bool UNICHARSET::eq(UNICHAR_ID unichar_id,
const char* const unichar_repr) const {
return strcmp(this->id_to_unichar(unichar_id), unichar_repr) == 0;
}
bool UNICHARSET::save_to_string(STRING *str) const {
const int kFileBufSize = 1024;
char buffer[kFileBufSize + 1];
snprintf(buffer, kFileBufSize, "%d\n", this->size());
*str = buffer;
for (UNICHAR_ID id = 0; id < this->size(); ++id) {
int min_bottom, max_bottom, min_top, max_top;
get_top_bottom(id, &min_bottom, &max_bottom, &min_top, &max_top);
float width, width_sd;
get_width_stats(id, &width, &width_sd);
float bearing, bearing_sd;
get_bearing_stats(id, &bearing, &bearing_sd);
float advance, advance_sd;
get_advance_stats(id, &advance, &advance_sd);
unsigned int properties = this->get_properties(id);
if (strcmp(this->id_to_unichar(id), " ") == 0) {
snprintf(buffer, kFileBufSize, "%s %x %s %d\n", "NULL", properties,
this->get_script_from_script_id(this->get_script(id)),
this->get_other_case(id));
} else {
snprintf(buffer, kFileBufSize,
"%s %x %d,%d,%d,%d,%g,%g,%g,%g,%g,%g %s %d %d %d %s\t# %s\n",
this->id_to_unichar(id), properties,
min_bottom, max_bottom, min_top, max_top, width, width_sd,
bearing, bearing_sd, advance, advance_sd,
this->get_script_from_script_id(this->get_script(id)),
this->get_other_case(id), this->get_direction(id),
this->get_mirror(id), this->get_normed_unichar(id),
this->debug_str(id).string());
}
*str += buffer;
}
return true;
}
// TODO(rays) Replace with TFile everywhere.
class InMemoryFilePointer {
public:
InMemoryFilePointer(const char *memory, int mem_size)
: memory_(memory), fgets_ptr_(memory), mem_size_(mem_size) { }
char *fgets(char *orig_dst, int size) {
const char *src_end = memory_ + mem_size_;
char *dst_end = orig_dst + size - 1;
if (size < 1) {
return fgets_ptr_ < src_end ? orig_dst : NULL;
}
char *dst = orig_dst;
char ch = '^';
while (fgets_ptr_ < src_end && dst < dst_end && ch != '\n') {
ch = *dst++ = *fgets_ptr_++;
}
*dst = 0;
return (dst == orig_dst) ? NULL : orig_dst;
}
private:
const char *memory_;
const char *fgets_ptr_;
const int mem_size_;
};
bool UNICHARSET::load_from_inmemory_file(
const char *memory, int mem_size, bool skip_fragments) {
InMemoryFilePointer mem_fp(memory, mem_size);
TessResultCallback2<char *, char *, int> *fgets_cb =
NewPermanentTessCallback(&mem_fp, &InMemoryFilePointer::fgets);
bool success = load_via_fgets(fgets_cb, skip_fragments);
delete fgets_cb;
return success;
}
class LocalFilePointer {
public:
LocalFilePointer(FILE *stream) : fp_(stream) {}
char *fgets(char *dst, int size) {
return ::fgets(dst, size, fp_);
}
private:
FILE *fp_;
};
bool UNICHARSET::load_from_file(FILE *file, bool skip_fragments) {
LocalFilePointer lfp(file);
TessResultCallback2<char *, char *, int> *fgets_cb =
NewPermanentTessCallback(&lfp, &LocalFilePointer::fgets);
bool success = load_via_fgets(fgets_cb, skip_fragments);
delete fgets_cb;
return success;
}
bool UNICHARSET::load_from_file(tesseract::TFile *file, bool skip_fragments) {
TessResultCallback2<char *, char *, int> *fgets_cb =
NewPermanentTessCallback(file, &tesseract::TFile::FGets);
bool success = load_via_fgets(fgets_cb, skip_fragments);
delete fgets_cb;
return success;
}
bool UNICHARSET::load_via_fgets(
TessResultCallback2<char *, char *, int> *fgets_cb,
bool skip_fragments) {
int unicharset_size;
char buffer[256];
this->clear();
if (fgets_cb->Run(buffer, sizeof(buffer)) == NULL ||
sscanf(buffer, "%d", &unicharset_size) != 1) {
return false;
}
this->reserve(unicharset_size);
for (UNICHAR_ID id = 0; id < unicharset_size; ++id) {
char unichar[256];
unsigned int properties;
char script[64];
strcpy(script, null_script);
int min_bottom = 0;
int max_bottom = MAX_UINT8;
int min_top = 0;
int max_top = MAX_UINT8;
float width = 0.0f;
float width_sd = 0.0f;
float bearing = 0.0f;
float bearing_sd = 0.0f;
float advance = 0.0f;
float advance_sd = 0.0f;
// TODO(eger): check that this default it ok
// after enabling BiDi iterator for Arabic+Cube.
int direction = UNICHARSET::U_LEFT_TO_RIGHT;
UNICHAR_ID other_case = id;
UNICHAR_ID mirror = id;
char normed[64];
int v = -1;
if (fgets_cb->Run(buffer, sizeof (buffer)) == NULL ||
((v = sscanf(buffer,
"%s %x %d,%d,%d,%d,%g,%g,%g,%g,%g,%g %63s %d %d %d %63s",
unichar, &properties,
&min_bottom, &max_bottom, &min_top, &max_top,
&width, &width_sd, &bearing, &bearing_sd,
&advance, &advance_sd, script, &other_case,
&direction, &mirror, normed)) != 17 &&
(v = sscanf(buffer,
"%s %x %d,%d,%d,%d,%g,%g,%g,%g,%g,%g %63s %d %d %d",
unichar, &properties,
&min_bottom, &max_bottom, &min_top, &max_top,
&width, &width_sd, &bearing, &bearing_sd,
&advance, &advance_sd, script, &other_case,
&direction, &mirror)) != 16 &&
(v = sscanf(buffer, "%s %x %d,%d,%d,%d %63s %d %d %d",
unichar, &properties,
&min_bottom, &max_bottom, &min_top, &max_top,
script, &other_case, &direction, &mirror)) != 10 &&
(v = sscanf(buffer, "%s %x %d,%d,%d,%d %63s %d", unichar, &properties,
&min_bottom, &max_bottom, &min_top, &max_top,
script, &other_case)) != 8 &&
(v = sscanf(buffer, "%s %x %63s %d", unichar, &properties,
script, &other_case)) != 4 &&
(v = sscanf(buffer, "%s %x %63s",
unichar, &properties, script)) != 3 &&
(v = sscanf(buffer, "%s %x", unichar, &properties)) != 2)) {
return false;
}
// Skip fragments if needed.
CHAR_FRAGMENT *frag = NULL;
if (skip_fragments && (frag = CHAR_FRAGMENT::parse_from_string(unichar))) {
2014-09-18 09:29:32 +08:00
int num_pieces = frag->get_total();
delete frag;
2014-09-18 09:29:32 +08:00
// Skip multi-element fragments, but keep singles like UNICHAR_BROKEN in.
if (num_pieces > 1)
continue;
}
// Insert unichar into unicharset and set its properties.
if (strcmp(unichar, "NULL") == 0)
this->unichar_insert(" ");
else
this->unichar_insert(unichar);
this->set_isalpha(id, properties & ISALPHA_MASK);
this->set_islower(id, properties & ISLOWER_MASK);
this->set_isupper(id, properties & ISUPPER_MASK);
this->set_isdigit(id, properties & ISDIGIT_MASK);
this->set_ispunctuation(id, properties & ISPUNCTUATION_MASK);
this->set_isngram(id, false);
this->set_script(id, script);
this->unichars[id].properties.enabled = true;
this->set_top_bottom(id, min_bottom, max_bottom, min_top, max_top);
this->set_width_stats(id, width, width_sd);
this->set_bearing_stats(id, bearing, bearing_sd);
this->set_advance_stats(id, advance, advance_sd);
this->set_direction(id, static_cast<UNICHARSET::Direction>(direction));
ASSERT_HOST(other_case < unicharset_size);
this->set_other_case(id, (v>3) ? other_case : id);
ASSERT_HOST(mirror < unicharset_size);
this->set_mirror(id, (v>8) ? mirror : id);
this->set_normed(id, (v>16) ? normed : unichar);
}
post_load_setup();
return true;
}
// Sets up internal data after loading the file, based on the char
// properties. Called from load_from_file, but also needs to be run
// during set_unicharset_properties.
void UNICHARSET::post_load_setup() {
// Number of alpha chars with the case property minus those without,
// in order to determine that half the alpha chars have case.
int net_case_alphas = 0;
int x_height_alphas = 0;
int cap_height_alphas = 0;
top_bottom_set_ = false;
for (UNICHAR_ID id = 0; id < size_used; ++id) {
int min_bottom = 0;
int max_bottom = MAX_UINT8;
int min_top = 0;
int max_top = MAX_UINT8;
get_top_bottom(id, &min_bottom, &max_bottom, &min_top, &max_top);
if (min_top > 0)
top_bottom_set_ = true;
if (get_isalpha(id)) {
if (get_islower(id) || get_isupper(id))
++net_case_alphas;
else
--net_case_alphas;
if (min_top < kMeanlineThreshold && max_top < kMeanlineThreshold)
++x_height_alphas;
else if (min_top > kMeanlineThreshold && max_top > kMeanlineThreshold)
++cap_height_alphas;
}
set_normed_ids(id);
}
script_has_upper_lower_ = net_case_alphas > 0;
script_has_xheight_ = script_has_upper_lower_ ||
(x_height_alphas > cap_height_alphas * kMinXHeightFraction &&
cap_height_alphas > x_height_alphas * kMinCapHeightFraction);
null_sid_ = get_script_id_from_name(null_script);
ASSERT_HOST(null_sid_ == 0);
common_sid_ = get_script_id_from_name("Common");
latin_sid_ = get_script_id_from_name("Latin");
cyrillic_sid_ = get_script_id_from_name("Cyrillic");
greek_sid_ = get_script_id_from_name("Greek");
han_sid_ = get_script_id_from_name("Han");
hiragana_sid_ = get_script_id_from_name("Hiragana");
katakana_sid_ = get_script_id_from_name("Katakana");
// Compute default script. Use the highest-counting alpha script, that is
// not the common script, as that still contains some "alphas".
int* script_counts = new int[script_table_size_used];
memset(script_counts, 0, sizeof(*script_counts) * script_table_size_used);
for (int id = 0; id < size_used; ++id) {
if (get_isalpha(id)) {
++script_counts[get_script(id)];
}
}
default_sid_ = 0;
for (int s = 1; s < script_table_size_used; ++s) {
if (script_counts[s] > script_counts[default_sid_] && s != common_sid_)
default_sid_ = s;
}
delete [] script_counts;
}
// Returns true if right_to_left scripts are significant in the unicharset,
// but without being so sensitive that "universal" unicharsets containing
// characters from many scripts, like orientation and script detection,
// look like they are right_to_left.
bool UNICHARSET::major_right_to_left() const {
int ltr_count = 0;
int rtl_count = 0;
for (int id = 0; id < size_used; ++id) {
int dir = get_direction(id);
if (dir == UNICHARSET::U_LEFT_TO_RIGHT) ltr_count++;
if (dir == UNICHARSET::U_RIGHT_TO_LEFT ||
dir == UNICHARSET::U_RIGHT_TO_LEFT_ARABIC ||
dir == UNICHARSET::U_ARABIC_NUMBER) rtl_count++;
}
return rtl_count > ltr_count;
}
// Set a whitelist and/or blacklist of characters to recognize.
// An empty or NULL whitelist enables everything (minus any blacklist).
// An empty or NULL blacklist disables nothing.
2014-10-10 04:28:03 +08:00
// An empty or NULL blacklist has no effect.
void UNICHARSET::set_black_and_whitelist(const char* blacklist,
2014-10-10 04:28:03 +08:00
const char* whitelist,
const char* unblacklist) {
bool def_enabled = whitelist == NULL || whitelist[0] == '\0';
// Set everything to default
for (int ch = 0; ch < size_used; ++ch)
unichars[ch].properties.enabled = def_enabled;
if (!def_enabled) {
// Enable the whitelist.
GenericVector<UNICHAR_ID> encoding;
encode_string(whitelist, false, &encoding, NULL, NULL);
for (int i = 0; i < encoding.size(); ++i) {
if (encoding[i] != INVALID_UNICHAR_ID)
unichars[encoding[i]].properties.enabled = true;
}
}
if (blacklist != NULL && blacklist[0] != '\0') {
// Disable the blacklist.
GenericVector<UNICHAR_ID> encoding;
encode_string(blacklist, false, &encoding, NULL, NULL);
for (int i = 0; i < encoding.size(); ++i) {
if (encoding[i] != INVALID_UNICHAR_ID)
unichars[encoding[i]].properties.enabled = false;
}
}
2014-10-10 04:28:03 +08:00
if (unblacklist != NULL && unblacklist[0] != '\0') {
// Re-enable the unblacklist.
GenericVector<UNICHAR_ID> encoding;
encode_string(unblacklist, false, &encoding, NULL, NULL);
for (int i = 0; i < encoding.size(); ++i) {
if (encoding[i] != INVALID_UNICHAR_ID)
unichars[encoding[i]].properties.enabled = true;
}
}
}
// Returns true if there are any repeated unicodes in the normalized
// text of any unichar-id in the unicharset.
bool UNICHARSET::AnyRepeatedUnicodes() const {
int start_id = 0;
if (has_special_codes()) start_id = SPECIAL_UNICHAR_CODES_COUNT;
for (int id = start_id; id < size_used; ++id) {
// Convert to unicodes.
GenericVector<int> unicodes;
if (UNICHAR::UTF8ToUnicode(get_normed_unichar(id), &unicodes) &&
unicodes.size() > 1) {
for (int u = 1; u < unicodes.size(); ++u) {
if (unicodes[u - 1] == unicodes[u]) return true;
}
}
}
return false;
}
int UNICHARSET::add_script(const char* script) {
for (int i = 0; i < script_table_size_used; ++i) {
if (strcmp(script, script_table[i]) == 0)
return i;
}
if (script_table_size_reserved == 0) {
script_table_size_reserved = 8;
script_table = new char*[script_table_size_reserved];
} else if (script_table_size_used >= script_table_size_reserved) {
assert(script_table_size_used == script_table_size_reserved);
script_table_size_reserved += script_table_size_reserved;
char** new_script_table = new char*[script_table_size_reserved];
memcpy(new_script_table, script_table, script_table_size_used * sizeof(char*));
delete[] script_table;
script_table = new_script_table;
}
script_table[script_table_size_used] = new char[strlen(script) + 1];
strcpy(script_table[script_table_size_used], script);
return script_table_size_used++;
}
// Returns the string that represents a fragment
// with the given unichar, pos and total.
STRING CHAR_FRAGMENT::to_string(const char *unichar, int pos, int total,
bool natural) {
if (total == 1) return STRING(unichar);
STRING result = "";
result += kSeparator;
result += unichar;
char buffer[kMaxLen];
snprintf(buffer, kMaxLen, "%c%d%c%d", kSeparator, pos,
natural ? kNaturalFlag : kSeparator, total);
result += buffer;
return result;
}
CHAR_FRAGMENT *CHAR_FRAGMENT::parse_from_string(const char *string) {
const char *ptr = string;
int len = strlen(string);
if (len < kMinLen || *ptr != kSeparator) {
return NULL; // this string can not represent a fragment
}
ptr++; // move to the next character
int step = 0;
while ((ptr + step) < (string + len) && *(ptr + step) != kSeparator) {
step += UNICHAR::utf8_step(ptr + step);
}
if (step == 0 || step > UNICHAR_LEN) {
return NULL; // no character for unichar or the character is too long
}
char unichar[UNICHAR_LEN + 1];
strncpy(unichar, ptr, step);
unichar[step] = '\0'; // null terminate unichar
ptr += step; // move to the next fragment separator
int pos = 0;
int total = 0;
bool natural = false;
char *end_ptr = NULL;
for (int i = 0; i < 2; i++) {
if (ptr > string + len || *ptr != kSeparator) {
if (i == 1 && *ptr == kNaturalFlag)
natural = true;
else
return NULL; // Failed to parse fragment representation.
}
ptr++; // move to the next character
i == 0 ? pos = static_cast<int>(strtol(ptr, &end_ptr, 10))
: total = static_cast<int>(strtol(ptr, &end_ptr, 10));
ptr = end_ptr;
}
if (ptr != string + len) {
return NULL; // malformed fragment representation
}
CHAR_FRAGMENT *fragment = new CHAR_FRAGMENT();
fragment->set_all(unichar, pos, total, natural);
return fragment;
}
int UNICHARSET::get_script_id_from_name(const char* script_name) const {
for (int i = 0; i < script_table_size_used; ++i) {
if (strcmp(script_name, script_table[i]) == 0)
return i;
}
return 0; // 0 is always the null_script
}