mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-08 02:47:49 +08:00
145 lines
4.5 KiB
C++
145 lines
4.5 KiB
C++
|
///////////////////////////////////////////////////////////////////////
|
||
|
// File: detlinefit.cpp
|
||
|
// Description: Deterministic least median squares line fitting.
|
||
|
// Author: Ray Smith
|
||
|
// Created: Thu Feb 28 14:45:01 PDT 2008
|
||
|
//
|
||
|
// (C) Copyright 2008, Google Inc.
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
#include "detlinefit.h"
|
||
|
#include "statistc.h"
|
||
|
#include "ndminx.h"
|
||
|
|
||
|
namespace tesseract {
|
||
|
|
||
|
// The number of points to consider at each end.
|
||
|
const int kNumEndPoints = 3;
|
||
|
|
||
|
DetLineFit::DetLineFit() {
|
||
|
}
|
||
|
|
||
|
DetLineFit::~DetLineFit() {
|
||
|
}
|
||
|
|
||
|
// Delete all Added points.
|
||
|
void DetLineFit::Clear() {
|
||
|
pt_list_.clear();
|
||
|
}
|
||
|
|
||
|
// Add a new point. Takes a copy - the pt doesn't need to stay in scope.
|
||
|
void DetLineFit::Add(const ICOORD& pt) {
|
||
|
ICOORDELT_IT it = &pt_list_;
|
||
|
ICOORDELT* new_pt = new ICOORDELT(pt);
|
||
|
it.add_to_end(new_pt);
|
||
|
}
|
||
|
|
||
|
// Fit a line to the points, returning the fitted line as a pair of
|
||
|
// points, and the upper quartile error.
|
||
|
double DetLineFit::Fit(ICOORD* pt1, ICOORD* pt2) {
|
||
|
ICOORDELT_IT it(&pt_list_);
|
||
|
// Do something sensible with no points.
|
||
|
if (pt_list_.empty()) {
|
||
|
pt1->set_x(0);
|
||
|
pt1->set_y(0);
|
||
|
*pt2 = *pt1;
|
||
|
return 0.0;
|
||
|
}
|
||
|
// Count the points and find the first and last kNumEndPoints.
|
||
|
ICOORD* starts[kNumEndPoints];
|
||
|
ICOORD* ends[kNumEndPoints];
|
||
|
int pt_count = 0;
|
||
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
||
|
if (pt_count < kNumEndPoints) {
|
||
|
starts[pt_count] = it.data();
|
||
|
ends[pt_count] = starts[pt_count];
|
||
|
} else {
|
||
|
for (int i = 1; i < kNumEndPoints; ++i)
|
||
|
ends[i - 1] = ends[i];
|
||
|
ends[kNumEndPoints - 1] = it.data();
|
||
|
}
|
||
|
++pt_count;
|
||
|
}
|
||
|
// 1 or 2 points need special treatment.
|
||
|
if (pt_count <= 2) {
|
||
|
*pt1 = *starts[0];
|
||
|
if (pt_count > 1)
|
||
|
*pt2 = *starts[1];
|
||
|
else
|
||
|
*pt2 = *pt1;
|
||
|
return 0.0;
|
||
|
}
|
||
|
int end_count = MIN(pt_count, kNumEndPoints);
|
||
|
int* distances = new int[pt_count];
|
||
|
double best_uq = -1.0;
|
||
|
// Iterate each pair of points and find the best fitting line.
|
||
|
for (int i = 0; i < end_count; ++i) {
|
||
|
ICOORD* start = starts[i];
|
||
|
for (int j = 0; j < end_count; ++j) {
|
||
|
ICOORD* end = ends[j];
|
||
|
if (start != end) {
|
||
|
// Compute the upper quartile error from the line.
|
||
|
double dist = ComputeErrors(*start, *end, distances);
|
||
|
if (dist < best_uq || best_uq < 0.0) {
|
||
|
best_uq = dist;
|
||
|
*pt1 = *start;
|
||
|
*pt2 = *end;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
delete [] distances;
|
||
|
// Finally compute the square root to return the true distance.
|
||
|
return best_uq > 0.0 ? sqrt(best_uq) : best_uq;
|
||
|
}
|
||
|
|
||
|
// Comparator function used by the nth_item funtion.
|
||
|
static int CompareInts(const void *p1, const void *p2) {
|
||
|
const int* i1 = reinterpret_cast<const int*>(p1);
|
||
|
const int* i2 = reinterpret_cast<const int*>(p2);
|
||
|
|
||
|
return *i1 - *i2;
|
||
|
}
|
||
|
|
||
|
// Compute all the cross product distances of the points from the line
|
||
|
// and return the true squared upper quartile distance.
|
||
|
double DetLineFit::ComputeErrors(const ICOORD start, const ICOORD end,
|
||
|
int* distances) {
|
||
|
ICOORDELT_IT it(&pt_list_);
|
||
|
ICOORD line_vector = end;
|
||
|
line_vector -= start;
|
||
|
// Compute the distance of each point from the line.
|
||
|
int pt_index = 0;
|
||
|
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
|
||
|
ICOORD pt_vector = *it.data();
|
||
|
pt_vector -= start;
|
||
|
// Compute |line_vector||pt_vector|sin(angle between)
|
||
|
int dist = line_vector * pt_vector;
|
||
|
if (dist < 0)
|
||
|
dist = -dist;
|
||
|
distances[pt_index++] = dist;
|
||
|
}
|
||
|
// Now get the upper quartile distance.
|
||
|
int index = choose_nth_item(3 * pt_index / 4, distances, pt_index,
|
||
|
sizeof(distances[0]), CompareInts);
|
||
|
double dist = distances[index];
|
||
|
// The true distance is the square root of the dist squared / the
|
||
|
// squared length of line_vector (which is the dot product with itself)
|
||
|
// Don't bother with the square root. Just return the square distance.
|
||
|
return dist * dist / (line_vector % line_vector);
|
||
|
}
|
||
|
|
||
|
} // namespace tesseract.
|
||
|
|
||
|
|