tesseract/wordrec/chop.cpp

419 lines
12 KiB
C++
Raw Normal View History

/* -*-C-*-
********************************************************************************
*
* File: chop.c (Formerly chop.c)
* Description:
* Author: Mark Seaman, OCR Technology
* Created: Fri Oct 16 14:37:00 1987
* Modified: Tue Jul 30 16:41:11 1991 (Mark Seaman) marks@hpgrlt
* Language: C
* Package: N/A
* Status: Reusable Software Component
*
* (c) Copyright 1987, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
*********************************************************************************/
/*----------------------------------------------------------------------
I n c l u d e s
----------------------------------------------------------------------*/
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
#include "chop.h"
#include "outlines.h"
#include "olutil.h"
#include "tordvars.h"
#include "callcpp.h"
#include "plotedges.h"
#include "const.h"
#include <math.h>
/*----------------------------------------------------------------------
V a r i a b l e s
----------------------------------------------------------------------*/
INT_VAR(chop_debug, 0, "Chop debug");
BOOL_VAR(chop_enable, 1, "Chop enable");
BOOL_VAR(chop_vertical_creep, 0, "Vertical creep");
INT_VAR(chop_split_length, 10000, "Split Length");
INT_VAR(chop_same_distance, 2, "Same distance");
INT_VAR(chop_min_outline_points, 6, "Min Number of Points on Outline");
INT_VAR(chop_inside_angle, -50, "Min Inside Angle Bend");
INT_VAR(chop_min_outline_area, 2000, "Min Outline Area");
double_VAR(chop_split_dist_knob, 0.5, "Split length adjustment");
double_VAR(chop_overlap_knob, 0.9, "Split overlap adjustment");
double_VAR(chop_center_knob, 0.15, "Split center adjustment");
double_VAR(chop_sharpness_knob, 0.06, "Split sharpness adjustment");
double_VAR(chop_width_change_knob, 5.0, "Width change adjustment");
double_VAR(chop_ok_split, 100.0, "OK split limit");
double_VAR(chop_good_split, 50.0, "Good split limit");
INT_VAR(chop_x_y_weight, 3, "X / Y length weight");
/*----------------------------------------------------------------------
M a c r o s
----------------------------------------------------------------------*/
/**
* @name length_product
*
* Compute the product of the length of two vectors. The
* vectors must be of type POINT. This product is used in computing
* angles.
*/
#define length_product(p1,p2) \
(sqrt ((((float) (p1).x * (p1).x + (float) (p1).y * (p1).y) * \
((float) (p2).x * (p2).x + (float) (p2).y * (p2).y))))
/*----------------------------------------------------------------------
F u n c t i o n s
----------------------------------------------------------------------*/
/**
* @name point_priority
*
* Assign a priority to and edge point that might be used as part of a
* split. The argument should be of type EDGEPT.
*/
PRIORITY point_priority(EDGEPT *point) {
return ((PRIORITY) point_bend_angle (point));
}
/**
* @name add_point_to_list
*
* Add an edge point to a POINT_GROUP containg a list of other points.
*/
void add_point_to_list(POINT_GROUP point_list, EDGEPT *point) {
HEAPENTRY data;
if (SizeOfHeap (point_list) < MAX_NUM_POINTS - 2) {
data.Data = (char *) point;
data.Key = point_priority (point);
HeapStore(point_list, &data);
}
#ifndef GRAPHICS_DISABLED
if (chop_debug > 2)
mark_outline(point);
#endif
}
/**
* @name angle_change
*
* Return the change in angle (degrees) of the line segments between
* points one and two, and two and three.
*/
int angle_change(EDGEPT *point1, EDGEPT *point2, EDGEPT *point3) {
VECTOR vector1;
VECTOR vector2;
int angle;
float length;
/* Compute angle */
vector1.x = point2->pos.x - point1->pos.x;
vector1.y = point2->pos.y - point1->pos.y;
vector2.x = point3->pos.x - point2->pos.x;
vector2.y = point3->pos.y - point2->pos.y;
/* Use cross product */
length = length_product (vector1, vector2);
if ((int) length == 0)
return (0);
angle = static_cast<int>(floor(asin(CROSS (vector1, vector2) /
length) / PI * 180.0 + 0.5));
/* Use dot product */
if (SCALAR (vector1, vector2) < 0)
angle = 180 - angle;
/* Adjust angle */
if (angle > 180)
angle -= 360;
if (angle <= -180)
angle += 360;
return (angle);
}
/**
* @name is_little_chunk
*
* Return TRUE if one of the pieces resulting from this split would
* less than some number of edge points.
*/
int is_little_chunk(EDGEPT *point1, EDGEPT *point2) {
EDGEPT *p = point1; /* Iterator */
int counter = 0;
do {
/* Go from P1 to P2 */
if (is_same_edgept (point2, p)) {
if (is_small_area (point1, point2))
return (TRUE);
else
break;
}
p = p->next;
}
while ((p != point1) && (counter++ < chop_min_outline_points));
/* Go from P2 to P1 */
p = point2;
counter = 0;
do {
if (is_same_edgept (point1, p)) {
return (is_small_area (point2, point1));
}
p = p->next;
}
while ((p != point2) && (counter++ < chop_min_outline_points));
return (FALSE);
}
/**
* @name is_small_area
*
* Test the area defined by a split accross this outline.
*/
int is_small_area(EDGEPT *point1, EDGEPT *point2) {
EDGEPT *p = point1->next; /* Iterator */
int area = 0;
TPOINT origin;
do {
/* Go from P1 to P2 */
origin.x = p->pos.x - point1->pos.x;
origin.y = p->pos.y - point1->pos.y;
area += CROSS (origin, p->vec);
p = p->next;
}
while (!is_same_edgept (point2, p));
return (area < chop_min_outline_area);
}
/**
* @name pick_close_point
*
* Choose the edge point that is closest to the critical point. This
* point may not be exactly vertical from the critical point.
*/
EDGEPT *pick_close_point(EDGEPT *critical_point,
EDGEPT *vertical_point,
int *best_dist) {
EDGEPT *best_point = NULL;
int this_distance;
int found_better;
do {
found_better = FALSE;
this_distance = edgept_dist (critical_point, vertical_point);
if (this_distance <= *best_dist) {
if (!(same_point (critical_point->pos, vertical_point->pos) ||
same_point (critical_point->pos, vertical_point->next->pos) ||
(best_point && same_point (best_point->pos, vertical_point->pos)) ||
is_exterior_point (critical_point, vertical_point))) {
*best_dist = this_distance;
best_point = vertical_point;
if (chop_vertical_creep)
found_better = TRUE;
}
}
vertical_point = vertical_point->next;
}
while (found_better == TRUE);
return (best_point);
}
/**
* @name prioritize_points
*
* Find a list of edge points from the outer outline of this blob. For
* each of these points assign a priority. Sort these points using a
* heap structure so that they can be visited in order.
*/
void prioritize_points(TESSLINE *outline, POINT_GROUP points) {
EDGEPT *this_point;
EDGEPT *local_min = NULL;
EDGEPT *local_max = NULL;
this_point = outline->loop;
local_min = this_point;
local_max = this_point;
do {
if (tord_debug_5)
cprintf ("(%3d,%3d) min=%3d, max=%3d, dir=%2d, ang=%2.0f\n",
this_point->pos.x, this_point->pos.y,
(local_min ? local_min->pos.y : 999),
(local_max ? local_max->pos.y : 999),
direction (this_point), point_priority (this_point));
if (this_point->vec.y < 0) {
/* Look for minima */
if (local_max != NULL)
new_max_point(local_max, points);
else if (is_inside_angle (this_point))
add_point_to_list(points, this_point);
local_max = NULL;
local_min = this_point->next;
}
else if (this_point->vec.y > 0) {
/* Look for maxima */
if (local_min != NULL)
new_min_point(local_min, points);
else if (is_inside_angle (this_point))
add_point_to_list(points, this_point);
local_min = NULL;
local_max = this_point->next;
}
else {
/* Flat area */
if (local_max != NULL) {
if (local_max->prev->vec.y != 0) {
new_max_point(local_max, points);
}
local_max = this_point->next;
local_min = NULL;
}
else {
if (local_min->prev->vec.y != 0) {
new_min_point(local_min, points);
}
local_min = this_point->next;
local_max = NULL;
}
}
/* Next point */
this_point = this_point->next;
}
while (this_point != outline->loop);
}
/**
* @name new_min_point
*
* Found a new minimum point try to decide whether to save it or not.
* Return the new value for the local minimum. If a point is saved then
* the local minimum is reset to NULL.
*/
void new_min_point(EDGEPT *local_min, POINT_GROUP points) {
inT16 dir;
dir = direction (local_min);
if (dir < 0) {
add_point_to_list(points, local_min);
return;
}
if (dir == 0 && point_priority (local_min) < 0) {
add_point_to_list(points, local_min);
return;
}
}
/**
* @name new_max_point
*
* Found a new minimum point try to decide whether to save it or not.
* Return the new value for the local minimum. If a point is saved then
* the local minimum is reset to NULL.
*/
void new_max_point(EDGEPT *local_max, POINT_GROUP points) {
inT16 dir;
dir = direction (local_max);
if (dir > 0) {
add_point_to_list(points, local_max);
return;
}
if (dir == 0 && point_priority (local_max) < 0) {
add_point_to_list(points, local_max);
return;
}
}
/**
* @name vertical_projection_point
*
* For one point on the outline, find the corresponding point on the
* other side of the outline that is a likely projection for a split
* point. This is done by iterating through the edge points until the
* X value of the point being looked at is greater than the X value of
* the split point. Ensure that the point being returned is not right
* next to the split point. Return the edge point as a result.
*/
void vertical_projection_point(EDGEPT *split_point, EDGEPT *target_point,
EDGEPT** best_point) {
EDGEPT *p; /* Iterator */
EDGEPT *this_edgept; /* Iterator */
int x = split_point->pos.x; /* X value of vertical */
int best_dist = LARGE_DISTANCE;/* Best point found */
if (*best_point != NULL)
best_dist = edgept_dist(split_point, *best_point);
p = target_point;
/* Look at each edge point */
do {
if ((((p->pos.x <= x) && (x <= p->next->pos.x)) ||
((p->next->pos.x <= x) && (x <= p->pos.x))) &&
!same_point (split_point->pos, p->pos) &&
!same_point (split_point->pos, p->next->pos)
&& (*best_point == NULL || !same_point ((*best_point)->pos, p->pos))) {
this_edgept = near_point (split_point, p, p->next);
if (*best_point == NULL)
best_dist = edgept_dist (split_point, this_edgept);
this_edgept =
pick_close_point(split_point, this_edgept, &best_dist);
if (this_edgept)
*best_point = this_edgept;
}
p = p->next;
}
while (p != target_point);
}