mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-18 19:39:24 +08:00
306 lines
10 KiB
C++
306 lines
10 KiB
C++
|
// Copyright 2008 Google Inc.
|
||
|
// All Rights Reserved.
|
||
|
// Author: ahmadab@google.com (Ahmad Abdulkader)
|
||
|
//
|
||
|
// neural_net.cpp: Declarations of a class for an object that
|
||
|
// represents an arbitrary network of neurons
|
||
|
//
|
||
|
#include <vector>
|
||
|
#include <string>
|
||
|
#include "neural_net.h"
|
||
|
#include "input_file_buffer.h"
|
||
|
|
||
|
namespace tesseract {
|
||
|
|
||
|
NeuralNet::NeuralNet() {
|
||
|
Init();
|
||
|
}
|
||
|
|
||
|
NeuralNet::~NeuralNet() {
|
||
|
// clean up the wts chunks vector
|
||
|
for(int vec = 0; vec < wts_vec_.size(); vec++) {
|
||
|
delete wts_vec_[vec];
|
||
|
}
|
||
|
// clean up neurons
|
||
|
delete []neurons_;
|
||
|
// clean up nodes
|
||
|
for (int node_idx = 0; node_idx < neuron_cnt_; node_idx++) {
|
||
|
delete []fast_nodes_[node_idx].inputs;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
// Initiaization function
|
||
|
void NeuralNet::Init() {
|
||
|
read_only_ = true;
|
||
|
auto_encoder_ = false;
|
||
|
alloc_wgt_cnt_ = 0;
|
||
|
wts_cnt_ = 0;
|
||
|
neuron_cnt_ = 0;
|
||
|
in_cnt_ = 0;
|
||
|
out_cnt_ = 0;
|
||
|
wts_vec_.clear();
|
||
|
neurons_ = NULL;
|
||
|
inputs_mean_.clear();
|
||
|
inputs_std_dev_.clear();
|
||
|
inputs_min_.clear();
|
||
|
inputs_max_.clear();
|
||
|
}
|
||
|
|
||
|
// Does a fast feedforward for read_only nets
|
||
|
// Templatized for float and double Types
|
||
|
template <typename Type> bool NeuralNet::FastFeedForward(const Type *inputs,
|
||
|
Type *outputs) {
|
||
|
int node_idx = 0;
|
||
|
Node *node = &fast_nodes_[0];
|
||
|
// feed inputs in and offset them by the pre-computed bias
|
||
|
for (node_idx = 0; node_idx < in_cnt_; node_idx++, node++) {
|
||
|
node->out = inputs[node_idx] - node->bias;
|
||
|
}
|
||
|
// compute nodes activations and outputs
|
||
|
for (;node_idx < neuron_cnt_; node_idx++, node++) {
|
||
|
double activation = -node->bias;
|
||
|
for (int fan_in_idx = 0; fan_in_idx < node->fan_in_cnt; fan_in_idx++) {
|
||
|
activation += (node->inputs[fan_in_idx].input_weight *
|
||
|
node->inputs[fan_in_idx].input_node->out);
|
||
|
}
|
||
|
node->out = Neuron::Sigmoid(activation);
|
||
|
}
|
||
|
// copy the outputs to the output buffers
|
||
|
node = &fast_nodes_[neuron_cnt_ - out_cnt_];
|
||
|
for (node_idx = 0; node_idx < out_cnt_; node_idx++, node++) {
|
||
|
outputs[node_idx] = node->out;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Performs a feedforward for general nets. Used mainly in training mode
|
||
|
// Templatized for float and double Types
|
||
|
template <typename Type> bool NeuralNet::FeedForward(const Type *inputs,
|
||
|
Type *outputs) {
|
||
|
// call the fast version in case of readonly nets
|
||
|
if (read_only_) {
|
||
|
return FastFeedForward(inputs, outputs);
|
||
|
}
|
||
|
// clear all neurons
|
||
|
Clear();
|
||
|
// for auto encoders, apply no input normalization
|
||
|
if (auto_encoder_) {
|
||
|
for (int in = 0; in < in_cnt_; in++) {
|
||
|
neurons_[in].set_output(inputs[in]);
|
||
|
}
|
||
|
} else {
|
||
|
// Input normalization : subtract mean and divide by stddev
|
||
|
for (int in = 0; in < in_cnt_; in++) {
|
||
|
neurons_[in].set_output((inputs[in] - inputs_min_[in]) /
|
||
|
(inputs_max_[in] - inputs_min_[in]));
|
||
|
neurons_[in].set_output((neurons_[in].output() - inputs_mean_[in]) /
|
||
|
inputs_std_dev_[in]);
|
||
|
}
|
||
|
}
|
||
|
// compute the net outputs: follow a pull model each output pulls the
|
||
|
// outputs of its input nodes and so on
|
||
|
for (int out = neuron_cnt_ - out_cnt_; out < neuron_cnt_; out++) {
|
||
|
neurons_[out].FeedForward();
|
||
|
// copy the values to the output buffer
|
||
|
outputs[out] = neurons_[out].output();
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Sets a connection between two neurons
|
||
|
bool NeuralNet::SetConnection(int from, int to) {
|
||
|
// allocate the wgt
|
||
|
float *wts = AllocWgt(1);
|
||
|
if (wts == NULL) {
|
||
|
return false;
|
||
|
}
|
||
|
// register the connection
|
||
|
neurons_[to].AddFromConnection(neurons_ + from, wts, 1);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Create a fast readonly version of the net
|
||
|
bool NeuralNet::CreateFastNet() {
|
||
|
fast_nodes_.resize(neuron_cnt_);
|
||
|
// build the node structures
|
||
|
int wts_cnt = 0;
|
||
|
for (int node_idx = 0; node_idx < neuron_cnt_; node_idx++) {
|
||
|
Node *node = &fast_nodes_[node_idx];
|
||
|
if (neurons_[node_idx].node_type() == Neuron::Input) {
|
||
|
// Input neurons have no fan-in
|
||
|
node->fan_in_cnt = 0;
|
||
|
node->inputs = NULL;
|
||
|
// Input bias is the normalization offset computed from
|
||
|
// training input stats
|
||
|
if (fabs(inputs_max_[node_idx] - inputs_min_[node_idx]) <
|
||
|
kMinInputRange) {
|
||
|
// if the range approaches zero, the stdev is not defined,
|
||
|
// this indicates that this input does not change.
|
||
|
// Set the bias to zero
|
||
|
node->bias = 0.0f;
|
||
|
} else {
|
||
|
node->bias = inputs_min_[node_idx] + (inputs_mean_[node_idx] *
|
||
|
(inputs_max_[node_idx] - inputs_min_[node_idx]));
|
||
|
}
|
||
|
} else {
|
||
|
node->bias = neurons_[node_idx].bias();
|
||
|
node->fan_in_cnt = neurons_[node_idx].fan_in_cnt();
|
||
|
// allocate memory for fan-in nodes
|
||
|
node->inputs = new WeightedNode[node->fan_in_cnt];
|
||
|
if (node->inputs == NULL) {
|
||
|
return false;
|
||
|
}
|
||
|
for (int fan_in = 0; fan_in < node->fan_in_cnt; fan_in++) {
|
||
|
// identify fan-in neuron
|
||
|
const int id = neurons_[node_idx].fan_in(fan_in)->id();
|
||
|
// Feedback connections are not allowed and should never happen
|
||
|
if (id >= node_idx) {
|
||
|
return false;
|
||
|
}
|
||
|
// add the the fan-in neuron and its wgt
|
||
|
node->inputs[fan_in].input_node = &fast_nodes_[id];
|
||
|
float wgt_val = neurons_[node_idx].fan_in_wts(fan_in);
|
||
|
// for input neurons normalize the wgt by the input scaling
|
||
|
// values to save time during feedforward
|
||
|
if (neurons_[node_idx].fan_in(fan_in)->node_type() == Neuron::Input) {
|
||
|
// if the range approaches zero, the stdev is not defined,
|
||
|
// this indicates that this input does not change.
|
||
|
// Set the weight to zero
|
||
|
if (fabs(inputs_max_[id] - inputs_min_[id]) < kMinInputRange) {
|
||
|
wgt_val = 0.0f;
|
||
|
} else {
|
||
|
wgt_val /= ((inputs_max_[id] - inputs_min_[id]) *
|
||
|
inputs_std_dev_[id]);
|
||
|
}
|
||
|
}
|
||
|
node->inputs[fan_in].input_weight = wgt_val;
|
||
|
}
|
||
|
// incr wgt count to validate against at the end
|
||
|
wts_cnt += node->fan_in_cnt;
|
||
|
}
|
||
|
}
|
||
|
// sanity check
|
||
|
return wts_cnt_ == wts_cnt;
|
||
|
}
|
||
|
|
||
|
// returns a pointer to the requested set of weights
|
||
|
// Allocates in chunks
|
||
|
float * NeuralNet::AllocWgt(int wgt_cnt) {
|
||
|
// see if need to allocate a new chunk of wts
|
||
|
if (wts_vec_.size() == 0 || (alloc_wgt_cnt_ + wgt_cnt) > kWgtChunkSize) {
|
||
|
// add the new chunck to the wts_chunks vector
|
||
|
wts_vec_.push_back(new vector<float> (kWgtChunkSize));
|
||
|
alloc_wgt_cnt_ = 0;
|
||
|
}
|
||
|
float *ret_ptr = &((*wts_vec_.back())[alloc_wgt_cnt_]);
|
||
|
// incr usage counts
|
||
|
alloc_wgt_cnt_ += wgt_cnt;
|
||
|
wts_cnt_ += wgt_cnt;
|
||
|
return ret_ptr;
|
||
|
}
|
||
|
|
||
|
// create a new net object using an input file as a source
|
||
|
NeuralNet *NeuralNet::FromFile(const string file_name) {
|
||
|
// open the file
|
||
|
InputFileBuffer input_buff(file_name);
|
||
|
// create a new net object using input buffer
|
||
|
NeuralNet *net_obj = FromInputBuffer(&input_buff);
|
||
|
return net_obj;
|
||
|
}
|
||
|
|
||
|
// create a net object from an input buffer
|
||
|
NeuralNet *NeuralNet::FromInputBuffer(InputFileBuffer *ib) {
|
||
|
// create a new net object
|
||
|
NeuralNet *net_obj = new NeuralNet();
|
||
|
if (net_obj == NULL) {
|
||
|
return NULL;
|
||
|
}
|
||
|
// load the net
|
||
|
if (!net_obj->ReadBinary(ib)) {
|
||
|
delete net_obj;
|
||
|
net_obj = NULL;
|
||
|
}
|
||
|
return net_obj;
|
||
|
}
|
||
|
|
||
|
// Compute the output of a specific output node.
|
||
|
// This function is useful for application that are interested in a single
|
||
|
// output of the net and do not want to waste time on the rest
|
||
|
// This is the fast-read-only version of this function
|
||
|
template <typename Type> bool NeuralNet::FastGetNetOutput(const Type *inputs,
|
||
|
int output_id,
|
||
|
Type *output) {
|
||
|
// feed inputs in and offset them by the pre-computed bias
|
||
|
int node_idx = 0;
|
||
|
Node *node = &fast_nodes_[0];
|
||
|
for (node_idx = 0; node_idx < in_cnt_; node_idx++, node++) {
|
||
|
node->out = inputs[node_idx] - node->bias;
|
||
|
}
|
||
|
|
||
|
// compute nodes' activations and outputs for hidden nodes if any
|
||
|
int hidden_node_cnt = neuron_cnt_ - out_cnt_;
|
||
|
for (;node_idx < hidden_node_cnt; node_idx++, node++) {
|
||
|
double activation = -node->bias;
|
||
|
for (int fan_in_idx = 0; fan_in_idx < node->fan_in_cnt; fan_in_idx++) {
|
||
|
activation += (node->inputs[fan_in_idx].input_weight *
|
||
|
node->inputs[fan_in_idx].input_node->out);
|
||
|
}
|
||
|
node->out = Neuron::Sigmoid(activation);
|
||
|
}
|
||
|
|
||
|
// compute the output of the required output node
|
||
|
node += output_id;
|
||
|
double activation = -node->bias;
|
||
|
for (int fan_in_idx = 0; fan_in_idx < node->fan_in_cnt; fan_in_idx++) {
|
||
|
activation += (node->inputs[fan_in_idx].input_weight *
|
||
|
node->inputs[fan_in_idx].input_node->out);
|
||
|
}
|
||
|
(*output) = Neuron::Sigmoid(activation);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Performs a feedforward for general nets. Used mainly in training mode
|
||
|
// Templatized for float and double Types
|
||
|
template <typename Type> bool NeuralNet::GetNetOutput(const Type *inputs,
|
||
|
int output_id,
|
||
|
Type *output) {
|
||
|
// validate output id
|
||
|
if (output_id < 0 || output_id >= out_cnt_) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// call the fast version in case of readonly nets
|
||
|
if (read_only_) {
|
||
|
return FastGetNetOutput(inputs, output_id, output);
|
||
|
}
|
||
|
|
||
|
// For the slow version, we'll just call FeedForward and return the
|
||
|
// appropriate output
|
||
|
vector<Type> outputs(out_cnt_);
|
||
|
if (!FeedForward(inputs, &outputs[0])) {
|
||
|
return false;
|
||
|
}
|
||
|
(*output) = outputs[output_id];
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Instantiate all supported templates now that the functions have been defined.
|
||
|
template bool NeuralNet::FeedForward(const float *inputs, float *outputs);
|
||
|
template bool NeuralNet::FeedForward(const double *inputs, double *outputs);
|
||
|
template bool NeuralNet::FastFeedForward(const float *inputs, float *outputs);
|
||
|
template bool NeuralNet::FastFeedForward(const double *inputs,
|
||
|
double *outputs);
|
||
|
template bool NeuralNet::GetNetOutput(const float *inputs, int output_id,
|
||
|
float *output);
|
||
|
template bool NeuralNet::GetNetOutput(const double *inputs, int output_id,
|
||
|
double *output);
|
||
|
template bool NeuralNet::FastGetNetOutput(const float *inputs, int output_id,
|
||
|
float *output);
|
||
|
template bool NeuralNet::FastGetNetOutput(const double *inputs, int output_id,
|
||
|
double *output);
|
||
|
template bool NeuralNet::ReadBinary(InputFileBuffer *input_buffer);
|
||
|
|
||
|
}
|