tesseract/wordrec/segsearch.cpp

357 lines
15 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// File: segsearch.h
// Description: Segmentation search functions.
// Author: Daria Antonova
// Created: Mon Jun 23 11:26:43 PDT 2008
//
// (C) Copyright 2009, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "wordrec.h"
#include "associate.h"
#include "language_model.h"
#include "matrix.h"
#include "params.h"
#include "lm_pain_points.h"
#include "ratngs.h"
namespace tesseract {
void Wordrec::DoSegSearch(WERD_RES* word_res) {
BestChoiceBundle best_choice_bundle(word_res->ratings->dimension());
// Run Segmentation Search.
SegSearch(word_res, &best_choice_bundle, NULL);
}
void Wordrec::SegSearch(WERD_RES* word_res,
BestChoiceBundle* best_choice_bundle,
BlamerBundle* blamer_bundle) {
LMPainPoints pain_points(segsearch_max_pain_points,
segsearch_max_char_wh_ratio,
assume_fixed_pitch_char_segment,
&getDict(), segsearch_debug_level);
// Compute scaling factor that will help us recover blob outline length
// from classifier rating and certainty for the blob.
float rating_cert_scale = -1.0 * getDict().certainty_scale / rating_scale;
GenericVector<SegSearchPending> pending;
InitialSegSearch(word_res, &pain_points, &pending, best_choice_bundle,
blamer_bundle);
if (!SegSearchDone(0)) { // find a better choice
if (chop_enable && word_res->chopped_word != NULL) {
improve_by_chopping(rating_cert_scale, word_res, best_choice_bundle,
blamer_bundle, &pain_points, &pending);
}
if (chop_debug) SEAM::PrintSeams("Final seam list:", word_res->seam_array);
if (blamer_bundle != NULL &&
!blamer_bundle->ChoiceIsCorrect(word_res->best_choice)) {
blamer_bundle->SetChopperBlame(word_res, wordrec_debug_blamer);
}
}
// Keep trying to find a better path by fixing the "pain points".
MATRIX_COORD pain_point;
float pain_point_priority;
int num_futile_classifications = 0;
STRING blamer_debug;
while (wordrec_enable_assoc &&
(!SegSearchDone(num_futile_classifications) ||
(blamer_bundle != NULL &&
blamer_bundle->GuidedSegsearchStillGoing()))) {
// Get the next valid "pain point".
bool found_nothing = true;
LMPainPointsType pp_type;
while ((pp_type = pain_points.Deque(&pain_point, &pain_point_priority)) !=
LM_PPTYPE_NUM) {
if (!pain_point.Valid(*word_res->ratings)) {
word_res->ratings->IncreaseBandSize(
pain_point.row - pain_point.col + 1);
}
if (pain_point.Valid(*word_res->ratings) &&
!word_res->ratings->Classified(pain_point.col, pain_point.row,
getDict().WildcardID())) {
found_nothing = false;
break;
}
}
if (found_nothing) {
if (segsearch_debug_level > 0) tprintf("Pain points queue is empty\n");
break;
}
ProcessSegSearchPainPoint(pain_point_priority, pain_point,
LMPainPoints::PainPointDescription(pp_type),
&pending, word_res, &pain_points, blamer_bundle);
UpdateSegSearchNodes(rating_cert_scale, pain_point.col, &pending,
word_res, &pain_points, best_choice_bundle,
blamer_bundle);
if (!best_choice_bundle->updated) ++num_futile_classifications;
if (segsearch_debug_level > 0) {
tprintf("num_futile_classifications %d\n", num_futile_classifications);
}
best_choice_bundle->updated = false; // reset updated
// See if it's time to terminate SegSearch or time for starting a guided
// search for the true path to find the blame for the incorrect best_choice.
if (SegSearchDone(num_futile_classifications) &&
blamer_bundle != NULL &&
blamer_bundle->GuidedSegsearchNeeded(word_res->best_choice)) {
InitBlamerForSegSearch(word_res, &pain_points, blamer_bundle,
&blamer_debug);
}
} // end while loop exploring alternative paths
if (blamer_bundle != NULL) {
blamer_bundle->FinishSegSearch(word_res->best_choice,
wordrec_debug_blamer, &blamer_debug);
}
if (segsearch_debug_level > 0) {
tprintf("Done with SegSearch (AcceptableChoiceFound: %d)\n",
language_model_->AcceptableChoiceFound());
}
}
// Setup and run just the initial segsearch on an established matrix,
// without doing any additional chopping or joining.
void Wordrec::WordSearch(WERD_RES* word_res) {
LMPainPoints pain_points(segsearch_max_pain_points,
segsearch_max_char_wh_ratio,
assume_fixed_pitch_char_segment,
&getDict(), segsearch_debug_level);
GenericVector<SegSearchPending> pending;
BestChoiceBundle best_choice_bundle(word_res->ratings->dimension());
// Run Segmentation Search.
InitialSegSearch(word_res, &pain_points, &pending, &best_choice_bundle, NULL);
if (segsearch_debug_level > 0) {
tprintf("Ending ratings matrix%s:\n",
wordrec_enable_assoc ? " (with assoc)" : "");
word_res->ratings->print(getDict().getUnicharset());
}
}
// Setup and run just the initial segsearch on an established matrix,
// without doing any additional chopping or joining.
// (Internal factored version that can be used as part of the main SegSearch.)
void Wordrec::InitialSegSearch(WERD_RES* word_res, LMPainPoints* pain_points,
GenericVector<SegSearchPending>* pending,
BestChoiceBundle* best_choice_bundle,
BlamerBundle* blamer_bundle) {
if (segsearch_debug_level > 0) {
tprintf("Starting SegSearch on ratings matrix%s:\n",
wordrec_enable_assoc ? " (with assoc)" : "");
word_res->ratings->print(getDict().getUnicharset());
}
pain_points->GenerateInitial(word_res);
// Compute scaling factor that will help us recover blob outline length
// from classifier rating and certainty for the blob.
float rating_cert_scale = -1.0 * getDict().certainty_scale / rating_scale;
language_model_->InitForWord(prev_word_best_choice_,
assume_fixed_pitch_char_segment,
segsearch_max_char_wh_ratio, rating_cert_scale);
// Initialize blamer-related information: map character boxes recorded in
// blamer_bundle->norm_truth_word to the corresponding i,j indices in the
// ratings matrix. We expect this step to succeed, since when running the
// chopper we checked that the correct chops are present.
if (blamer_bundle != NULL) {
blamer_bundle->SetupCorrectSegmentation(word_res->chopped_word,
wordrec_debug_blamer);
}
// pending[col] tells whether there is update work to do to combine
// best_choice_bundle->beam[col - 1] with some BLOB_CHOICEs in matrix[col, *].
// As the language model state is updated, pending entries are modified to
// minimize duplication of work. It is important that during the update the
// children are considered in the non-decreasing order of their column, since
// this guarantees that all the parents would be up to date before an update
// of a child is done.
pending->init_to_size(word_res->ratings->dimension(), SegSearchPending());
// Search the ratings matrix for the initial best path.
(*pending)[0].SetColumnClassified();
UpdateSegSearchNodes(rating_cert_scale, 0, pending, word_res,
pain_points, best_choice_bundle, blamer_bundle);
}
void Wordrec::UpdateSegSearchNodes(
float rating_cert_scale,
int starting_col,
GenericVector<SegSearchPending>* pending,
WERD_RES *word_res,
LMPainPoints *pain_points,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle) {
MATRIX *ratings = word_res->ratings;
ASSERT_HOST(ratings->dimension() == pending->size());
ASSERT_HOST(ratings->dimension() == best_choice_bundle->beam.size());
for (int col = starting_col; col < ratings->dimension(); ++col) {
if (!(*pending)[col].WorkToDo()) continue;
int first_row = col;
int last_row = MIN(ratings->dimension() - 1,
col + ratings->bandwidth() - 1);
if ((*pending)[col].SingleRow() >= 0) {
first_row = last_row = (*pending)[col].SingleRow();
}
if (segsearch_debug_level > 0) {
tprintf("\n\nUpdateSegSearchNodes: col=%d, rows=[%d,%d], alljust=%d\n",
col, first_row, last_row,
(*pending)[col].IsRowJustClassified(MAX_INT32));
}
// Iterate over the pending list for this column.
for (int row = first_row; row <= last_row; ++row) {
// Update language model state of this child+parent pair.
BLOB_CHOICE_LIST *current_node = ratings->get(col, row);
LanguageModelState *parent_node =
col == 0 ? NULL : best_choice_bundle->beam[col - 1];
if (current_node != NULL &&
language_model_->UpdateState((*pending)[col].IsRowJustClassified(row),
col, row, current_node, parent_node,
pain_points, word_res,
best_choice_bundle, blamer_bundle) &&
row + 1 < ratings->dimension()) {
// Since the language model state of this entry changed, process all
// the child column.
(*pending)[row + 1].RevisitWholeColumn();
if (segsearch_debug_level > 0) {
tprintf("Added child col=%d to pending\n", row + 1);
}
} // end if UpdateState.
} // end for row.
} // end for col.
if (best_choice_bundle->best_vse != NULL) {
ASSERT_HOST(word_res->StatesAllValid());
if (best_choice_bundle->best_vse->updated) {
pain_points->GenerateFromPath(rating_cert_scale,
best_choice_bundle->best_vse, word_res);
if (!best_choice_bundle->fixpt.empty()) {
pain_points->GenerateFromAmbigs(best_choice_bundle->fixpt,
best_choice_bundle->best_vse, word_res);
}
}
}
// The segsearch is completed. Reset all updated flags on all VSEs and reset
// all pendings.
for (int col = 0; col < pending->size(); ++col) {
(*pending)[col].Clear();
ViterbiStateEntry_IT
vse_it(&best_choice_bundle->beam[col]->viterbi_state_entries);
for (vse_it.mark_cycle_pt(); !vse_it.cycled_list(); vse_it.forward()) {
vse_it.data()->updated = false;
}
}
}
void Wordrec::ProcessSegSearchPainPoint(
float pain_point_priority,
const MATRIX_COORD &pain_point, const char* pain_point_type,
GenericVector<SegSearchPending>* pending, WERD_RES *word_res,
LMPainPoints *pain_points, BlamerBundle *blamer_bundle) {
if (segsearch_debug_level > 0) {
tprintf("Classifying pain point %s priority=%.4f, col=%d, row=%d\n",
pain_point_type, pain_point_priority,
pain_point.col, pain_point.row);
}
ASSERT_HOST(pain_points != NULL);
MATRIX *ratings = word_res->ratings;
// Classify blob [pain_point.col pain_point.row]
if (!pain_point.Valid(*ratings)) {
ratings->IncreaseBandSize(pain_point.row + 1 - pain_point.col);
}
ASSERT_HOST(pain_point.Valid(*ratings));
BLOB_CHOICE_LIST *classified = classify_piece(word_res->seam_array,
pain_point.col, pain_point.row,
pain_point_type,
word_res->chopped_word,
blamer_bundle);
BLOB_CHOICE_LIST *lst = ratings->get(pain_point.col, pain_point.row);
if (lst == NULL) {
ratings->put(pain_point.col, pain_point.row, classified);
} else {
// We can not delete old BLOB_CHOICEs, since they might contain
// ViterbiStateEntries that are parents of other "active" entries.
// Thus if the matrix cell already contains classifications we add
// the new ones to the beginning of the list.
BLOB_CHOICE_IT it(lst);
it.add_list_before(classified);
delete classified; // safe to delete, since empty after add_list_before()
classified = NULL;
}
if (segsearch_debug_level > 0) {
print_ratings_list("Updated ratings matrix with a new entry:",
ratings->get(pain_point.col, pain_point.row),
getDict().getUnicharset());
ratings->print(getDict().getUnicharset());
}
// Insert initial "pain points" to join the newly classified blob
// with its left and right neighbors.
if (classified != NULL && !classified->empty()) {
if (pain_point.col > 0) {
pain_points->GeneratePainPoint(
pain_point.col - 1, pain_point.row, LM_PPTYPE_SHAPE, 0.0,
true, segsearch_max_char_wh_ratio, word_res);
}
if (pain_point.row + 1 < ratings->dimension()) {
pain_points->GeneratePainPoint(
pain_point.col, pain_point.row + 1, LM_PPTYPE_SHAPE, 0.0,
true, segsearch_max_char_wh_ratio, word_res);
}
}
(*pending)[pain_point.col].SetBlobClassified(pain_point.row);
}
// Resets enough of the results so that the Viterbi search is re-run.
// Needed when the n-gram model is enabled, as the multi-length comparison
// implementation will re-value existing paths to worse values.
void Wordrec::ResetNGramSearch(WERD_RES* word_res,
BestChoiceBundle* best_choice_bundle,
GenericVector<SegSearchPending>* pending) {
// TODO(rays) More refactoring required here.
// Delete existing viterbi states.
for (int col = 0; col < best_choice_bundle->beam.size(); ++col) {
best_choice_bundle->beam[col]->Clear();
}
// Reset best_choice_bundle.
word_res->ClearWordChoices();
best_choice_bundle->best_vse = NULL;
// Clear out all existing pendings and add a new one for the first column.
(*pending)[0].SetColumnClassified();
for (int i = 1; i < pending->size(); ++i)
(*pending)[i].Clear();
}
void Wordrec::InitBlamerForSegSearch(WERD_RES *word_res,
LMPainPoints *pain_points,
BlamerBundle *blamer_bundle,
STRING *blamer_debug) {
pain_points->Clear(); // Clear pain points heap.
TessResultCallback2<bool, int, int>* pp_cb = NewPermanentTessCallback(
pain_points, &LMPainPoints::GenerateForBlamer,
static_cast<double>(segsearch_max_char_wh_ratio), word_res);
blamer_bundle->InitForSegSearch(word_res->best_choice, word_res->ratings,
getDict().WildcardID(), wordrec_debug_blamer,
blamer_debug, pp_cb);
delete pp_cb;
}
} // namespace tesseract