2016-11-08 07:38:07 +08:00
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
// File: network.cpp
|
|
|
|
// Description: Base class for neural network implementations.
|
|
|
|
// Author: Ray Smith
|
|
|
|
// Created: Wed May 01 17:25:06 PST 2013
|
|
|
|
//
|
|
|
|
// (C) Copyright 2013, Google Inc.
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
|
2017-01-26 18:40:35 +08:00
|
|
|
// Include automatically generated configuration file if running autoconf.
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
|
|
#include "config_auto.h"
|
|
|
|
#endif
|
|
|
|
|
2016-11-08 07:38:07 +08:00
|
|
|
#include "network.h"
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
// This base class needs to know about all its sub-classes because of the
|
|
|
|
// factory deserializing method: CreateFromFile.
|
|
|
|
#include "allheaders.h"
|
|
|
|
#include "convolve.h"
|
|
|
|
#include "fullyconnected.h"
|
|
|
|
#include "input.h"
|
|
|
|
#include "lstm.h"
|
|
|
|
#include "maxpool.h"
|
|
|
|
#include "parallel.h"
|
|
|
|
#include "reconfig.h"
|
|
|
|
#include "reversed.h"
|
|
|
|
#include "scrollview.h"
|
|
|
|
#include "series.h"
|
|
|
|
#include "statistc.h"
|
|
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
|
|
#include "tfnetwork.h"
|
|
|
|
#endif
|
|
|
|
#include "tprintf.h"
|
|
|
|
|
|
|
|
namespace tesseract {
|
|
|
|
|
|
|
|
// Min and max window sizes.
|
|
|
|
const int kMinWinSize = 500;
|
|
|
|
const int kMaxWinSize = 2000;
|
|
|
|
// Window frame sizes need adding on to make the content fit.
|
|
|
|
const int kXWinFrameSize = 30;
|
|
|
|
const int kYWinFrameSize = 80;
|
|
|
|
|
|
|
|
// String names corresponding to the NetworkType enum. Keep in sync.
|
|
|
|
// Names used in Serialization to allow re-ordering/addition/deletion of
|
|
|
|
// layer types in NetworkType without invalidating existing network files.
|
|
|
|
char const* const Network::kTypeNames[NT_COUNT] = {
|
|
|
|
"Invalid", "Input",
|
|
|
|
"Convolve", "Maxpool",
|
|
|
|
"Parallel", "Replicated",
|
|
|
|
"ParBidiLSTM", "DepParUDLSTM",
|
|
|
|
"Par2dLSTM", "Series",
|
|
|
|
"Reconfig", "RTLReversed",
|
|
|
|
"TTBReversed", "XYTranspose",
|
|
|
|
"LSTM", "SummLSTM",
|
|
|
|
"Logistic", "LinLogistic",
|
|
|
|
"LinTanh", "Tanh",
|
|
|
|
"Relu", "Linear",
|
|
|
|
"Softmax", "SoftmaxNoCTC",
|
|
|
|
"LSTMSoftmax", "LSTMBinarySoftmax",
|
|
|
|
"TensorFlow",
|
|
|
|
};
|
|
|
|
|
|
|
|
Network::Network()
|
2016-12-01 07:51:17 +08:00
|
|
|
: type_(NT_NONE),
|
|
|
|
training_(TS_ENABLED),
|
|
|
|
needs_to_backprop_(true),
|
|
|
|
network_flags_(0),
|
|
|
|
ni_(0),
|
|
|
|
no_(0),
|
|
|
|
num_weights_(0),
|
|
|
|
forward_win_(NULL),
|
|
|
|
backward_win_(NULL),
|
|
|
|
randomizer_(NULL) {}
|
2016-11-08 07:38:07 +08:00
|
|
|
Network::Network(NetworkType type, const STRING& name, int ni, int no)
|
2016-12-01 07:51:17 +08:00
|
|
|
: type_(type),
|
|
|
|
training_(TS_ENABLED),
|
|
|
|
needs_to_backprop_(true),
|
|
|
|
network_flags_(0),
|
|
|
|
ni_(ni),
|
|
|
|
no_(no),
|
|
|
|
num_weights_(0),
|
|
|
|
name_(name),
|
|
|
|
forward_win_(NULL),
|
|
|
|
backward_win_(NULL),
|
|
|
|
randomizer_(NULL) {}
|
2016-11-08 07:38:07 +08:00
|
|
|
|
|
|
|
Network::~Network() {
|
|
|
|
}
|
|
|
|
|
2016-12-01 07:51:17 +08:00
|
|
|
// Suspends/Enables/Permanently disables training by setting the training_
|
|
|
|
// flag. Serialize and DeSerialize only operate on the run-time data if state
|
|
|
|
// is TS_DISABLED or TS_TEMP_DISABLE. Specifying TS_TEMP_DISABLE will
|
|
|
|
// temporarily disable layers in state TS_ENABLED, allowing a trainer to
|
|
|
|
// serialize as if it were a recognizer.
|
|
|
|
// TS_RE_ENABLE will re-enable layers that were previously in any disabled
|
|
|
|
// state. If in TS_TEMP_DISABLE then the flag is just changed, but if in
|
|
|
|
// TS_DISABLED, the deltas in the weight matrices are reinitialized so that a
|
|
|
|
// recognizer can be converted back to a trainer.
|
|
|
|
void Network::SetEnableTraining(TrainingState state) {
|
|
|
|
if (state == TS_RE_ENABLE) {
|
2017-05-06 07:39:43 +08:00
|
|
|
// Enable only from temp disabled.
|
|
|
|
if (training_ == TS_TEMP_DISABLE) training_ = TS_ENABLED;
|
|
|
|
} else if (state == TS_TEMP_DISABLE) {
|
|
|
|
// Temp disable only from enabled.
|
|
|
|
if (training_ == TS_ENABLED) training_ = state;
|
2016-12-01 07:51:17 +08:00
|
|
|
} else {
|
|
|
|
training_ = state;
|
|
|
|
}
|
2016-11-08 07:38:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Sets flags that control the action of the network. See NetworkFlags enum
|
|
|
|
// for bit values.
|
|
|
|
void Network::SetNetworkFlags(uinT32 flags) {
|
|
|
|
network_flags_ = flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sets up the network for training. Initializes weights using weights of
|
|
|
|
// scale `range` picked according to the random number generator `randomizer`.
|
|
|
|
int Network::InitWeights(float range, TRand* randomizer) {
|
|
|
|
randomizer_ = randomizer;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Provides a pointer to a TRand for any networks that care to use it.
|
|
|
|
// Note that randomizer is a borrowed pointer that should outlive the network
|
|
|
|
// and should not be deleted by any of the networks.
|
|
|
|
void Network::SetRandomizer(TRand* randomizer) {
|
|
|
|
randomizer_ = randomizer;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sets needs_to_backprop_ to needs_backprop and returns true if
|
|
|
|
// needs_backprop || any weights in this network so the next layer forward
|
|
|
|
// can be told to produce backprop for this layer if needed.
|
|
|
|
bool Network::SetupNeedsBackprop(bool needs_backprop) {
|
|
|
|
needs_to_backprop_ = needs_backprop;
|
|
|
|
return needs_backprop || num_weights_ > 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Writes to the given file. Returns false in case of error.
|
|
|
|
bool Network::Serialize(TFile* fp) const {
|
|
|
|
inT8 data = NT_NONE;
|
|
|
|
if (fp->FWrite(&data, sizeof(data), 1) != 1) return false;
|
|
|
|
STRING type_name = kTypeNames[type_];
|
|
|
|
if (!type_name.Serialize(fp)) return false;
|
|
|
|
data = training_;
|
|
|
|
if (fp->FWrite(&data, sizeof(data), 1) != 1) return false;
|
|
|
|
data = needs_to_backprop_;
|
|
|
|
if (fp->FWrite(&data, sizeof(data), 1) != 1) return false;
|
|
|
|
if (fp->FWrite(&network_flags_, sizeof(network_flags_), 1) != 1) return false;
|
|
|
|
if (fp->FWrite(&ni_, sizeof(ni_), 1) != 1) return false;
|
|
|
|
if (fp->FWrite(&no_, sizeof(no_), 1) != 1) return false;
|
|
|
|
if (fp->FWrite(&num_weights_, sizeof(num_weights_), 1) != 1) return false;
|
|
|
|
if (!name_.Serialize(fp)) return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reads from the given file. Returns false in case of error.
|
|
|
|
// Should be overridden by subclasses, but NOT called by their DeSerialize.
|
2017-05-04 07:09:44 +08:00
|
|
|
bool Network::DeSerialize(TFile* fp) {
|
2016-11-08 07:38:07 +08:00
|
|
|
inT8 data = 0;
|
|
|
|
if (fp->FRead(&data, sizeof(data), 1) != 1) return false;
|
|
|
|
if (data == NT_NONE) {
|
|
|
|
STRING type_name;
|
2017-05-04 07:09:44 +08:00
|
|
|
if (!type_name.DeSerialize(fp)) return false;
|
2016-11-08 07:38:07 +08:00
|
|
|
for (data = 0; data < NT_COUNT && type_name != kTypeNames[data]; ++data) {
|
|
|
|
}
|
|
|
|
if (data == NT_COUNT) {
|
|
|
|
tprintf("Invalid network layer type:%s\n", type_name.string());
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
type_ = static_cast<NetworkType>(data);
|
|
|
|
if (fp->FRead(&data, sizeof(data), 1) != 1) return false;
|
2016-12-01 07:51:17 +08:00
|
|
|
training_ = data == TS_ENABLED ? TS_ENABLED : TS_DISABLED;
|
2016-11-08 07:38:07 +08:00
|
|
|
if (fp->FRead(&data, sizeof(data), 1) != 1) return false;
|
|
|
|
needs_to_backprop_ = data != 0;
|
2017-05-04 07:09:44 +08:00
|
|
|
if (fp->FReadEndian(&network_flags_, sizeof(network_flags_), 1) != 1)
|
|
|
|
return false;
|
|
|
|
if (fp->FReadEndian(&ni_, sizeof(ni_), 1) != 1) return false;
|
|
|
|
if (fp->FReadEndian(&no_, sizeof(no_), 1) != 1) return false;
|
|
|
|
if (fp->FReadEndian(&num_weights_, sizeof(num_weights_), 1) != 1)
|
|
|
|
return false;
|
|
|
|
if (!name_.DeSerialize(fp)) return false;
|
2016-11-08 07:38:07 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reads from the given file. Returns NULL in case of error.
|
|
|
|
// Determines the type of the serialized class and calls its DeSerialize
|
|
|
|
// on a new object of the appropriate type, which is returned.
|
2017-05-04 07:09:44 +08:00
|
|
|
Network* Network::CreateFromFile(TFile* fp) {
|
2016-11-08 07:38:07 +08:00
|
|
|
Network stub;
|
2017-05-04 07:09:44 +08:00
|
|
|
if (!stub.DeSerialize(fp)) return NULL;
|
2016-11-08 07:38:07 +08:00
|
|
|
Network* network = NULL;
|
|
|
|
switch (stub.type_) {
|
|
|
|
case NT_CONVOLVE:
|
|
|
|
network = new Convolve(stub.name_, stub.ni_, 0, 0);
|
|
|
|
break;
|
|
|
|
case NT_INPUT:
|
|
|
|
network = new Input(stub.name_, stub.ni_, stub.no_);
|
|
|
|
break;
|
|
|
|
case NT_LSTM:
|
|
|
|
case NT_LSTM_SOFTMAX:
|
|
|
|
case NT_LSTM_SOFTMAX_ENCODED:
|
|
|
|
case NT_LSTM_SUMMARY:
|
|
|
|
network =
|
|
|
|
new LSTM(stub.name_, stub.ni_, stub.no_, stub.no_, false, stub.type_);
|
|
|
|
break;
|
|
|
|
case NT_MAXPOOL:
|
|
|
|
network = new Maxpool(stub.name_, stub.ni_, 0, 0);
|
|
|
|
break;
|
|
|
|
// All variants of Parallel.
|
|
|
|
case NT_PARALLEL:
|
|
|
|
case NT_REPLICATED:
|
|
|
|
case NT_PAR_RL_LSTM:
|
|
|
|
case NT_PAR_UD_LSTM:
|
|
|
|
case NT_PAR_2D_LSTM:
|
|
|
|
network = new Parallel(stub.name_, stub.type_);
|
|
|
|
break;
|
|
|
|
case NT_RECONFIG:
|
|
|
|
network = new Reconfig(stub.name_, stub.ni_, 0, 0);
|
|
|
|
break;
|
|
|
|
// All variants of reversed.
|
|
|
|
case NT_XREVERSED:
|
|
|
|
case NT_YREVERSED:
|
|
|
|
case NT_XYTRANSPOSE:
|
|
|
|
network = new Reversed(stub.name_, stub.type_);
|
|
|
|
break;
|
|
|
|
case NT_SERIES:
|
|
|
|
network = new Series(stub.name_);
|
|
|
|
break;
|
|
|
|
case NT_TENSORFLOW:
|
|
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
|
|
network = new TFNetwork(stub.name_);
|
|
|
|
#else
|
|
|
|
tprintf("TensorFlow not compiled in! -DINCLUDE_TENSORFLOW\n");
|
|
|
|
return NULL;
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
// All variants of FullyConnected.
|
|
|
|
case NT_SOFTMAX:
|
|
|
|
case NT_SOFTMAX_NO_CTC:
|
|
|
|
case NT_RELU:
|
|
|
|
case NT_TANH:
|
|
|
|
case NT_LINEAR:
|
|
|
|
case NT_LOGISTIC:
|
|
|
|
case NT_POSCLIP:
|
|
|
|
case NT_SYMCLIP:
|
|
|
|
network = new FullyConnected(stub.name_, stub.ni_, stub.no_, stub.type_);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
network->training_ = stub.training_;
|
|
|
|
network->needs_to_backprop_ = stub.needs_to_backprop_;
|
|
|
|
network->network_flags_ = stub.network_flags_;
|
|
|
|
network->num_weights_ = stub.num_weights_;
|
2017-05-04 07:09:44 +08:00
|
|
|
if (!network->DeSerialize(fp)) {
|
2016-11-08 07:38:07 +08:00
|
|
|
delete network;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return network;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns a random number in [-range, range].
|
|
|
|
double Network::Random(double range) {
|
|
|
|
ASSERT_HOST(randomizer_ != NULL);
|
|
|
|
return randomizer_->SignedRand(range);
|
|
|
|
}
|
|
|
|
|
|
|
|
// === Debug image display methods. ===
|
|
|
|
// Displays the image of the matrix to the forward window.
|
|
|
|
void Network::DisplayForward(const NetworkIO& matrix) {
|
2017-01-27 18:50:19 +08:00
|
|
|
#ifndef GRAPHICS_DISABLED // do nothing if there's no graphics
|
2016-11-08 07:38:07 +08:00
|
|
|
Pix* image = matrix.ToPix();
|
|
|
|
ClearWindow(false, name_.string(), pixGetWidth(image),
|
|
|
|
pixGetHeight(image), &forward_win_);
|
|
|
|
DisplayImage(image, forward_win_);
|
|
|
|
forward_win_->Update();
|
2017-01-27 18:50:19 +08:00
|
|
|
#endif // GRAPHICS_DISABLED
|
2016-11-08 07:38:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Displays the image of the matrix to the backward window.
|
|
|
|
void Network::DisplayBackward(const NetworkIO& matrix) {
|
2017-01-27 18:50:19 +08:00
|
|
|
#ifndef GRAPHICS_DISABLED // do nothing if there's no graphics
|
2016-11-08 07:38:07 +08:00
|
|
|
Pix* image = matrix.ToPix();
|
|
|
|
STRING window_name = name_ + "-back";
|
|
|
|
ClearWindow(false, window_name.string(), pixGetWidth(image),
|
|
|
|
pixGetHeight(image), &backward_win_);
|
|
|
|
DisplayImage(image, backward_win_);
|
|
|
|
backward_win_->Update();
|
2017-01-27 18:50:19 +08:00
|
|
|
#endif // GRAPHICS_DISABLED
|
2016-11-08 07:38:07 +08:00
|
|
|
}
|
|
|
|
|
2017-01-27 18:50:19 +08:00
|
|
|
#ifndef GRAPHICS_DISABLED
|
2016-11-08 07:38:07 +08:00
|
|
|
// Creates the window if needed, otherwise clears it.
|
|
|
|
void Network::ClearWindow(bool tess_coords, const char* window_name,
|
|
|
|
int width, int height, ScrollView** window) {
|
|
|
|
if (*window == NULL) {
|
|
|
|
int min_size = MIN(width, height);
|
|
|
|
if (min_size < kMinWinSize) {
|
|
|
|
if (min_size < 1) min_size = 1;
|
|
|
|
width = width * kMinWinSize / min_size;
|
|
|
|
height = height * kMinWinSize / min_size;
|
|
|
|
}
|
|
|
|
width += kXWinFrameSize;
|
|
|
|
height += kYWinFrameSize;
|
|
|
|
if (width > kMaxWinSize) width = kMaxWinSize;
|
|
|
|
if (height > kMaxWinSize) height = kMaxWinSize;
|
|
|
|
*window = new ScrollView(window_name, 80, 100, width, height, width, height,
|
|
|
|
tess_coords);
|
|
|
|
tprintf("Created window %s of size %d, %d\n", window_name, width, height);
|
|
|
|
} else {
|
|
|
|
(*window)->Clear();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Displays the pix in the given window. and returns the height of the pix.
|
|
|
|
// The pix is pixDestroyed.
|
|
|
|
int Network::DisplayImage(Pix* pix, ScrollView* window) {
|
|
|
|
int height = pixGetHeight(pix);
|
|
|
|
window->Image(pix, 0, 0);
|
|
|
|
pixDestroy(&pix);
|
|
|
|
return height;
|
|
|
|
}
|
|
|
|
#endif // GRAPHICS_DISABLED
|
|
|
|
|
|
|
|
} // namespace tesseract.
|