tesseract/lstm/network.cpp

341 lines
11 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// File: network.cpp
// Description: Base class for neural network implementations.
// Author: Ray Smith
// Created: Wed May 01 17:25:06 PST 2013
//
// (C) Copyright 2013, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
#include "network.h"
#include <stdlib.h>
// This base class needs to know about all its sub-classes because of the
// factory deserializing method: CreateFromFile.
#include "allheaders.h"
#include "convolve.h"
#include "fullyconnected.h"
#include "input.h"
#include "lstm.h"
#include "maxpool.h"
#include "parallel.h"
#include "reconfig.h"
#include "reversed.h"
#include "scrollview.h"
#include "series.h"
#include "statistc.h"
#ifdef INCLUDE_TENSORFLOW
#include "tfnetwork.h"
#endif
#include "tprintf.h"
namespace tesseract {
// Min and max window sizes.
const int kMinWinSize = 500;
const int kMaxWinSize = 2000;
// Window frame sizes need adding on to make the content fit.
const int kXWinFrameSize = 30;
const int kYWinFrameSize = 80;
// String names corresponding to the NetworkType enum. Keep in sync.
// Names used in Serialization to allow re-ordering/addition/deletion of
// layer types in NetworkType without invalidating existing network files.
char const* const Network::kTypeNames[NT_COUNT] = {
"Invalid", "Input",
"Convolve", "Maxpool",
"Parallel", "Replicated",
"ParBidiLSTM", "DepParUDLSTM",
"Par2dLSTM", "Series",
"Reconfig", "RTLReversed",
"TTBReversed", "XYTranspose",
"LSTM", "SummLSTM",
"Logistic", "LinLogistic",
"LinTanh", "Tanh",
"Relu", "Linear",
"Softmax", "SoftmaxNoCTC",
"LSTMSoftmax", "LSTMBinarySoftmax",
"TensorFlow",
};
Network::Network()
: type_(NT_NONE),
training_(TS_ENABLED),
needs_to_backprop_(true),
network_flags_(0),
ni_(0),
no_(0),
num_weights_(0),
forward_win_(NULL),
backward_win_(NULL),
randomizer_(NULL) {}
Network::Network(NetworkType type, const STRING& name, int ni, int no)
: type_(type),
training_(TS_ENABLED),
needs_to_backprop_(true),
network_flags_(0),
ni_(ni),
no_(no),
num_weights_(0),
name_(name),
forward_win_(NULL),
backward_win_(NULL),
randomizer_(NULL) {}
Network::~Network() {
}
// Suspends/Enables/Permanently disables training by setting the training_
// flag. Serialize and DeSerialize only operate on the run-time data if state
// is TS_DISABLED or TS_TEMP_DISABLE. Specifying TS_TEMP_DISABLE will
// temporarily disable layers in state TS_ENABLED, allowing a trainer to
// serialize as if it were a recognizer.
// TS_RE_ENABLE will re-enable layers that were previously in any disabled
// state. If in TS_TEMP_DISABLE then the flag is just changed, but if in
// TS_DISABLED, the deltas in the weight matrices are reinitialized so that a
// recognizer can be converted back to a trainer.
void Network::SetEnableTraining(TrainingState state) {
if (state == TS_RE_ENABLE) {
// Enable only from temp disabled.
if (training_ == TS_TEMP_DISABLE) training_ = TS_ENABLED;
} else if (state == TS_TEMP_DISABLE) {
// Temp disable only from enabled.
if (training_ == TS_ENABLED) training_ = state;
} else {
training_ = state;
}
}
// Sets flags that control the action of the network. See NetworkFlags enum
// for bit values.
void Network::SetNetworkFlags(uinT32 flags) {
network_flags_ = flags;
}
// Sets up the network for training. Initializes weights using weights of
// scale `range` picked according to the random number generator `randomizer`.
int Network::InitWeights(float range, TRand* randomizer) {
randomizer_ = randomizer;
return 0;
}
// Provides a pointer to a TRand for any networks that care to use it.
// Note that randomizer is a borrowed pointer that should outlive the network
// and should not be deleted by any of the networks.
void Network::SetRandomizer(TRand* randomizer) {
randomizer_ = randomizer;
}
// Sets needs_to_backprop_ to needs_backprop and returns true if
// needs_backprop || any weights in this network so the next layer forward
// can be told to produce backprop for this layer if needed.
bool Network::SetupNeedsBackprop(bool needs_backprop) {
needs_to_backprop_ = needs_backprop;
return needs_backprop || num_weights_ > 0;
}
// Writes to the given file. Returns false in case of error.
bool Network::Serialize(TFile* fp) const {
inT8 data = NT_NONE;
if (fp->FWrite(&data, sizeof(data), 1) != 1) return false;
STRING type_name = kTypeNames[type_];
if (!type_name.Serialize(fp)) return false;
data = training_;
if (fp->FWrite(&data, sizeof(data), 1) != 1) return false;
data = needs_to_backprop_;
if (fp->FWrite(&data, sizeof(data), 1) != 1) return false;
if (fp->FWrite(&network_flags_, sizeof(network_flags_), 1) != 1) return false;
if (fp->FWrite(&ni_, sizeof(ni_), 1) != 1) return false;
if (fp->FWrite(&no_, sizeof(no_), 1) != 1) return false;
if (fp->FWrite(&num_weights_, sizeof(num_weights_), 1) != 1) return false;
if (!name_.Serialize(fp)) return false;
return true;
}
// Reads from the given file. Returns false in case of error.
// Should be overridden by subclasses, but NOT called by their DeSerialize.
bool Network::DeSerialize(TFile* fp) {
inT8 data = 0;
if (fp->FRead(&data, sizeof(data), 1) != 1) return false;
if (data == NT_NONE) {
STRING type_name;
if (!type_name.DeSerialize(fp)) return false;
for (data = 0; data < NT_COUNT && type_name != kTypeNames[data]; ++data) {
}
if (data == NT_COUNT) {
tprintf("Invalid network layer type:%s\n", type_name.string());
return false;
}
}
type_ = static_cast<NetworkType>(data);
if (fp->FRead(&data, sizeof(data), 1) != 1) return false;
training_ = data == TS_ENABLED ? TS_ENABLED : TS_DISABLED;
if (fp->FRead(&data, sizeof(data), 1) != 1) return false;
needs_to_backprop_ = data != 0;
if (fp->FReadEndian(&network_flags_, sizeof(network_flags_), 1) != 1)
return false;
if (fp->FReadEndian(&ni_, sizeof(ni_), 1) != 1) return false;
if (fp->FReadEndian(&no_, sizeof(no_), 1) != 1) return false;
if (fp->FReadEndian(&num_weights_, sizeof(num_weights_), 1) != 1)
return false;
if (!name_.DeSerialize(fp)) return false;
return true;
}
// Reads from the given file. Returns NULL in case of error.
// Determines the type of the serialized class and calls its DeSerialize
// on a new object of the appropriate type, which is returned.
Network* Network::CreateFromFile(TFile* fp) {
Network stub;
if (!stub.DeSerialize(fp)) return NULL;
Network* network = NULL;
switch (stub.type_) {
case NT_CONVOLVE:
network = new Convolve(stub.name_, stub.ni_, 0, 0);
break;
case NT_INPUT:
network = new Input(stub.name_, stub.ni_, stub.no_);
break;
case NT_LSTM:
case NT_LSTM_SOFTMAX:
case NT_LSTM_SOFTMAX_ENCODED:
case NT_LSTM_SUMMARY:
network =
new LSTM(stub.name_, stub.ni_, stub.no_, stub.no_, false, stub.type_);
break;
case NT_MAXPOOL:
network = new Maxpool(stub.name_, stub.ni_, 0, 0);
break;
// All variants of Parallel.
case NT_PARALLEL:
case NT_REPLICATED:
case NT_PAR_RL_LSTM:
case NT_PAR_UD_LSTM:
case NT_PAR_2D_LSTM:
network = new Parallel(stub.name_, stub.type_);
break;
case NT_RECONFIG:
network = new Reconfig(stub.name_, stub.ni_, 0, 0);
break;
// All variants of reversed.
case NT_XREVERSED:
case NT_YREVERSED:
case NT_XYTRANSPOSE:
network = new Reversed(stub.name_, stub.type_);
break;
case NT_SERIES:
network = new Series(stub.name_);
break;
case NT_TENSORFLOW:
#ifdef INCLUDE_TENSORFLOW
network = new TFNetwork(stub.name_);
#else
tprintf("TensorFlow not compiled in! -DINCLUDE_TENSORFLOW\n");
return NULL;
#endif
break;
// All variants of FullyConnected.
case NT_SOFTMAX:
case NT_SOFTMAX_NO_CTC:
case NT_RELU:
case NT_TANH:
case NT_LINEAR:
case NT_LOGISTIC:
case NT_POSCLIP:
case NT_SYMCLIP:
network = new FullyConnected(stub.name_, stub.ni_, stub.no_, stub.type_);
break;
default:
return NULL;
}
network->training_ = stub.training_;
network->needs_to_backprop_ = stub.needs_to_backprop_;
network->network_flags_ = stub.network_flags_;
network->num_weights_ = stub.num_weights_;
if (!network->DeSerialize(fp)) {
delete network;
return NULL;
}
return network;
}
// Returns a random number in [-range, range].
double Network::Random(double range) {
ASSERT_HOST(randomizer_ != NULL);
return randomizer_->SignedRand(range);
}
// === Debug image display methods. ===
// Displays the image of the matrix to the forward window.
void Network::DisplayForward(const NetworkIO& matrix) {
#ifndef GRAPHICS_DISABLED // do nothing if there's no graphics
Pix* image = matrix.ToPix();
ClearWindow(false, name_.string(), pixGetWidth(image),
pixGetHeight(image), &forward_win_);
DisplayImage(image, forward_win_);
forward_win_->Update();
#endif // GRAPHICS_DISABLED
}
// Displays the image of the matrix to the backward window.
void Network::DisplayBackward(const NetworkIO& matrix) {
#ifndef GRAPHICS_DISABLED // do nothing if there's no graphics
Pix* image = matrix.ToPix();
STRING window_name = name_ + "-back";
ClearWindow(false, window_name.string(), pixGetWidth(image),
pixGetHeight(image), &backward_win_);
DisplayImage(image, backward_win_);
backward_win_->Update();
#endif // GRAPHICS_DISABLED
}
#ifndef GRAPHICS_DISABLED
// Creates the window if needed, otherwise clears it.
void Network::ClearWindow(bool tess_coords, const char* window_name,
int width, int height, ScrollView** window) {
if (*window == NULL) {
int min_size = MIN(width, height);
if (min_size < kMinWinSize) {
if (min_size < 1) min_size = 1;
width = width * kMinWinSize / min_size;
height = height * kMinWinSize / min_size;
}
width += kXWinFrameSize;
height += kYWinFrameSize;
if (width > kMaxWinSize) width = kMaxWinSize;
if (height > kMaxWinSize) height = kMaxWinSize;
*window = new ScrollView(window_name, 80, 100, width, height, width, height,
tess_coords);
tprintf("Created window %s of size %d, %d\n", window_name, width, height);
} else {
(*window)->Clear();
}
}
// Displays the pix in the given window. and returns the height of the pix.
// The pix is pixDestroyed.
int Network::DisplayImage(Pix* pix, ScrollView* window) {
int height = pixGetHeight(pix);
window->Image(pix, 0, 0);
pixDestroy(&pix);
return height;
}
#endif // GRAPHICS_DISABLED
} // namespace tesseract.