tesseract/cube/beam_search.cpp

488 lines
16 KiB
C++
Raw Normal View History

/**********************************************************************
* File: beam_search.cpp
* Description: Class to implement Beam Word Search Algorithm
* Author: Ahmad Abdulkader
* Created: 2007
*
* (C) Copyright 2008, Google Inc.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include <algorithm>
#include "beam_search.h"
#include "tesseractclass.h"
namespace tesseract {
BeamSearch::BeamSearch(CubeRecoContext *cntxt, bool word_mode) {
cntxt_ = cntxt;
seg_pt_cnt_ = 0;
col_cnt_ = 1;
col_ = NULL;
word_mode_ = word_mode;
}
// Cleanup the lattice corresponding to the last search
void BeamSearch::Cleanup() {
if (col_ != NULL) {
for (int col = 0; col < col_cnt_; col++) {
if (col_[col])
delete col_[col];
}
delete []col_;
}
col_ = NULL;
}
BeamSearch::~BeamSearch() {
Cleanup();
}
// Creates a set of children nodes emerging from a parent node based on
// the character alternate list and the language model.
void BeamSearch::CreateChildren(SearchColumn *out_col, LangModel *lang_mod,
SearchNode *parent_node,
LangModEdge *lm_parent_edge,
CharAltList *char_alt_list, int extra_cost) {
// get all the edges from this parent
int edge_cnt;
LangModEdge **lm_edges = lang_mod->GetEdges(char_alt_list,
lm_parent_edge, &edge_cnt);
if (lm_edges) {
// add them to the ending column with the appropriate parent
for (int edge = 0; edge < edge_cnt; edge++) {
// add a node to the column if the current column is not the
// last one, or if the lang model edge indicates it is valid EOW
if (!cntxt_->NoisyInput() && out_col->ColIdx() >= seg_pt_cnt_ &&
!lm_edges[edge]->IsEOW()) {
// free edge since no object is going to own it
delete lm_edges[edge];
continue;
}
// compute the recognition cost of this node
int recognition_cost = MIN_PROB_COST;
if (char_alt_list && char_alt_list->AltCount() > 0) {
recognition_cost = MAX(0, char_alt_list->ClassCost(
lm_edges[edge]->ClassID()));
// Add the no space cost. This should zero in word mode
recognition_cost += extra_cost;
}
// Note that the edge will be freed inside the column if
// AddNode is called
if (recognition_cost >= 0) {
out_col->AddNode(lm_edges[edge], recognition_cost, parent_node,
cntxt_);
} else {
delete lm_edges[edge];
}
} // edge
// free edge array
delete []lm_edges;
} // lm_edges
}
// Performs a beam seach in the specified search using the specified
// language model; returns an alternate list of possible words as a result.
WordAltList * BeamSearch::Search(SearchObject *srch_obj, LangModel *lang_mod) {
// verifications
if (!lang_mod)
lang_mod = cntxt_->LangMod();
if (!lang_mod) {
fprintf(stderr, "Cube ERROR (BeamSearch::Search): could not construct "
"LangModel\n");
return NULL;
}
// free existing state
Cleanup();
// get seg pt count
seg_pt_cnt_ = srch_obj->SegPtCnt();
if (seg_pt_cnt_ < 0) {
return NULL;
}
col_cnt_ = seg_pt_cnt_ + 1;
// disregard suspicious cases
if (seg_pt_cnt_ > 128) {
fprintf(stderr, "Cube ERROR (BeamSearch::Search): segment point count is "
"suspiciously high; bailing out\n");
return NULL;
}
// alloc memory for columns
col_ = new SearchColumn *[col_cnt_];
if (!col_) {
fprintf(stderr, "Cube ERROR (BeamSearch::Search): could not construct "
"SearchColumn array\n");
return NULL;
}
memset(col_, 0, col_cnt_ * sizeof(*col_));
// for all possible segments
for (int end_seg = 1; end_seg <= (seg_pt_cnt_ + 1); end_seg++) {
// create a search column
col_[end_seg - 1] = new SearchColumn(end_seg - 1,
cntxt_->Params()->BeamWidth());
if (!col_[end_seg - 1]) {
fprintf(stderr, "Cube ERROR (BeamSearch::Search): could not construct "
"SearchColumn for column %d\n", end_seg - 1);
return NULL;
}
// for all possible start segments
int init_seg = MAX(0, end_seg - cntxt_->Params()->MaxSegPerChar());
for (int strt_seg = init_seg; strt_seg < end_seg; strt_seg++) {
int parent_nodes_cnt;
SearchNode **parent_nodes;
// for the root segment, we do not have a parent
if (strt_seg == 0) {
parent_nodes_cnt = 1;
parent_nodes = NULL;
} else {
// for all the existing nodes in the starting column
parent_nodes_cnt = col_[strt_seg - 1]->NodeCount();
parent_nodes = col_[strt_seg - 1]->Nodes();
}
// run the shape recognizer
CharAltList *char_alt_list = srch_obj->RecognizeSegment(strt_seg - 1,
end_seg - 1);
// for all the possible parents
for (int parent_idx = 0; parent_idx < parent_nodes_cnt; parent_idx++) {
// point to the parent node
SearchNode *parent_node = !parent_nodes ? NULL
: parent_nodes[parent_idx];
LangModEdge *lm_parent_edge = !parent_node ? lang_mod->Root()
: parent_node->LangModelEdge();
// compute the cost of not having spaces within the segment range
int contig_cost = srch_obj->NoSpaceCost(strt_seg - 1, end_seg - 1);
// In phrase mode, compute the cost of not having a space before
// this character
int no_space_cost = 0;
if (!word_mode_ && strt_seg > 0) {
no_space_cost = srch_obj->NoSpaceCost(strt_seg - 1);
}
// if the no space cost is low enough
if ((contig_cost + no_space_cost) < MIN_PROB_COST) {
// Add the children nodes
CreateChildren(col_[end_seg - 1], lang_mod, parent_node,
lm_parent_edge, char_alt_list,
contig_cost + no_space_cost);
}
// In phrase mode and if not starting at the root
if (!word_mode_ && strt_seg > 0) { // parent_node must be non-NULL
// consider starting a new word for nodes that are valid EOW
if (parent_node->LangModelEdge()->IsEOW()) {
// get the space cost
int space_cost = srch_obj->SpaceCost(strt_seg - 1);
// if the space cost is low enough
if ((contig_cost + space_cost) < MIN_PROB_COST) {
// Restart the language model and add nodes as children to the
// space node.
CreateChildren(col_[end_seg - 1], lang_mod, parent_node, NULL,
char_alt_list, contig_cost + space_cost);
}
}
}
} // parent
} // strt_seg
// prune the column nodes
col_[end_seg - 1]->Prune();
// Free the column hash table. No longer needed
col_[end_seg - 1]->FreeHashTable();
} // end_seg
WordAltList *alt_list = CreateWordAltList(srch_obj);
return alt_list;
}
// Creates a Word alternate list from the results in the lattice.
WordAltList *BeamSearch::CreateWordAltList(SearchObject *srch_obj) {
// create an alternate list of all the nodes in the last column
int node_cnt = col_[col_cnt_ - 1]->NodeCount();
SearchNode **srch_nodes = col_[col_cnt_ - 1]->Nodes();
CharBigrams *bigrams = cntxt_->Bigrams();
WordUnigrams *word_unigrams = cntxt_->WordUnigramsObj();
// Save the index of the best-cost node before the alt list is
// sorted, so that we can retrieve it from the node list when backtracking.
best_presorted_node_idx_ = 0;
int best_cost = -1;
if (node_cnt <= 0)
return NULL;
// start creating the word alternate list
WordAltList *alt_list = new WordAltList(node_cnt + 1);
for (int node_idx = 0; node_idx < node_cnt; node_idx++) {
// recognition cost
int recognition_cost = srch_nodes[node_idx]->BestCost();
// compute the size cost of the alternate
char_32 *ch_buff = NULL;
int size_cost = SizeCost(srch_obj, srch_nodes[node_idx], &ch_buff);
// accumulate other costs
if (ch_buff) {
int cost = 0;
// char bigram cost
int bigram_cost = !bigrams ? 0 :
bigrams->Cost(ch_buff, cntxt_->CharacterSet());
// word unigram cost
int unigram_cost = !word_unigrams ? 0 :
word_unigrams->Cost(ch_buff, cntxt_->LangMod(),
cntxt_->CharacterSet());
// overall cost
cost = static_cast<int>(
(size_cost * cntxt_->Params()->SizeWgt()) +
(bigram_cost * cntxt_->Params()->CharBigramWgt()) +
(unigram_cost * cntxt_->Params()->WordUnigramWgt()) +
(recognition_cost * cntxt_->Params()->RecoWgt()));
// insert into word alt list
alt_list->Insert(ch_buff, cost,
static_cast<void *>(srch_nodes[node_idx]));
// Note that strict < is necessary because WordAltList::Sort()
// uses it in a bubble sort to swap entries.
if (best_cost < 0 || cost < best_cost) {
best_presorted_node_idx_ = node_idx;
best_cost = cost;
}
delete []ch_buff;
}
}
// sort the alternates based on cost
alt_list->Sort();
return alt_list;
}
// Returns the lattice column corresponding to the specified column index.
SearchColumn *BeamSearch::Column(int col) const {
if (col < 0 || col >= col_cnt_ || !col_)
return NULL;
return col_[col];
}
// Returns the best node in the last column of last performed search.
SearchNode *BeamSearch::BestNode() const {
if (col_cnt_ < 1 || !col_ || !col_[col_cnt_ - 1])
return NULL;
int node_cnt = col_[col_cnt_ - 1]->NodeCount();
SearchNode **srch_nodes = col_[col_cnt_ - 1]->Nodes();
if (node_cnt < 1 || !srch_nodes || !srch_nodes[0])
return NULL;
return srch_nodes[0];
}
// Returns the string corresponding to the specified alt.
char_32 *BeamSearch::Alt(int alt) const {
// get the last column of the lattice
if (col_cnt_ <= 0)
return NULL;
SearchColumn *srch_col = col_[col_cnt_ - 1];
if (!srch_col)
return NULL;
// point to the last node in the selected path
if (alt >= srch_col->NodeCount() || srch_col->Nodes() == NULL) {
return NULL;
}
SearchNode *srch_node = srch_col->Nodes()[alt];
if (!srch_node)
return NULL;
// get string
char_32 *str32 = srch_node->PathString();
if (!str32)
return NULL;
return str32;
}
// Backtracks from the specified node index and returns the corresponding
// character mapped segments and character count. Optional return
// arguments are the char_32 result string and character bounding
// boxes, if non-NULL values are passed in.
CharSamp **BeamSearch::BackTrack(SearchObject *srch_obj, int node_index,
int *char_cnt, char_32 **str32,
Boxa **char_boxes) const {
// get the last column of the lattice
if (col_cnt_ <= 0)
return NULL;
SearchColumn *srch_col = col_[col_cnt_ - 1];
if (!srch_col)
return NULL;
// point to the last node in the selected path
if (node_index >= srch_col->NodeCount() || !srch_col->Nodes())
return NULL;
SearchNode *srch_node = srch_col->Nodes()[node_index];
if (!srch_node)
return NULL;
return BackTrack(srch_obj, srch_node, char_cnt, str32, char_boxes);
}
// Backtracks from the specified node index and returns the corresponding
// character mapped segments and character count. Optional return
// arguments are the char_32 result string and character bounding
// boxes, if non-NULL values are passed in.
CharSamp **BeamSearch::BackTrack(SearchObject *srch_obj, SearchNode *srch_node,
int *char_cnt, char_32 **str32,
Boxa **char_boxes) const {
if (!srch_node)
return NULL;
if (str32) {
if (*str32)
delete [](*str32); // clear existing value
*str32 = srch_node->PathString();
if (!*str32)
return NULL;
}
if (char_boxes && *char_boxes) {
boxaDestroy(char_boxes); // clear existing value
}
CharSamp **chars;
chars = SplitByNode(srch_obj, srch_node, char_cnt, char_boxes);
if (!chars && str32)
delete []*str32;
return chars;
}
// Backtracks from the given lattice node and return the corresponding
// char mapped segments and character count. The character bounding
// boxes are optional return arguments, if non-NULL values are passed in.
CharSamp **BeamSearch::SplitByNode(SearchObject *srch_obj,
SearchNode *srch_node,
int *char_cnt,
Boxa **char_boxes) const {
// Count the characters (could be less than the path length when in
// phrase mode)
*char_cnt = 0;
SearchNode *node = srch_node;
while (node) {
node = node->ParentNode();
(*char_cnt)++;
}
if (*char_cnt == 0)
return NULL;
// Allocate box array
if (char_boxes) {
if (*char_boxes)
boxaDestroy(char_boxes); // clear existing value
*char_boxes = boxaCreate(*char_cnt);
if (*char_boxes == NULL)
return NULL;
}
// Allocate memory for CharSamp array.
CharSamp **chars = new CharSamp *[*char_cnt];
if (!chars) {
if (char_boxes)
boxaDestroy(char_boxes);
return NULL;
}
int ch_idx = *char_cnt - 1;
int seg_pt_cnt = srch_obj->SegPtCnt();
bool success=true;
while (srch_node && ch_idx >= 0) {
// Parent node (could be null)
SearchNode *parent_node = srch_node->ParentNode();
// Get the seg pts corresponding to the search node
int st_col = !parent_node ? 0 : parent_node->ColIdx() + 1;
int st_seg_pt = st_col <= 0 ? -1 : st_col - 1;
int end_col = srch_node->ColIdx();
int end_seg_pt = end_col >= seg_pt_cnt ? seg_pt_cnt : end_col;
// Get a char sample corresponding to the segmentation points
CharSamp *samp = srch_obj->CharSample(st_seg_pt, end_seg_pt);
if (!samp) {
success = false;
break;
}
samp->SetLabel(srch_node->NodeString());
chars[ch_idx] = samp;
if (char_boxes) {
// Create the corresponding character bounding box
Box *char_box = boxCreate(samp->Left(), samp->Top(),
samp->Width(), samp->Height());
if (!char_box) {
success = false;
break;
}
boxaAddBox(*char_boxes, char_box, L_INSERT);
}
srch_node = parent_node;
ch_idx--;
}
if (!success) {
delete []chars;
if (char_boxes)
boxaDestroy(char_boxes);
return NULL;
}
// Reverse the order of boxes.
if (char_boxes) {
int char_boxa_size = boxaGetCount(*char_boxes);
int limit = char_boxa_size / 2;
for (int i = 0; i < limit; ++i) {
int box1_idx = i;
int box2_idx = char_boxa_size - 1 - i;
Box *box1 = boxaGetBox(*char_boxes, box1_idx, L_CLONE);
Box *box2 = boxaGetBox(*char_boxes, box2_idx, L_CLONE);
boxaReplaceBox(*char_boxes, box2_idx, box1);
boxaReplaceBox(*char_boxes, box1_idx, box2);
}
}
return chars;
}
// Returns the size cost of a string for a lattice path that
// ends at the specified lattice node.
int BeamSearch::SizeCost(SearchObject *srch_obj, SearchNode *node,
char_32 **str32) const {
CharSamp **chars = NULL;
int char_cnt = 0;
if (!node)
return 0;
// Backtrack to get string and character segmentation
chars = BackTrack(srch_obj, node, &char_cnt, str32, NULL);
if (!chars)
return WORST_COST;
int size_cost = (cntxt_->SizeModel() == NULL) ? 0 :
cntxt_->SizeModel()->Cost(chars, char_cnt);
delete []chars;
return size_cost;
}
} // namespace tesesract