mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-08 02:47:49 +08:00
180 lines
7.3 KiB
C++
180 lines
7.3 KiB
C++
|
///////////////////////////////////////////////////////////////////////
|
||
|
// File: genericvector.h
|
||
|
// Description: Functions for producing classifications
|
||
|
// for the input to ambigstraining.
|
||
|
// Author: Daria Antonova
|
||
|
// Created: Mon Jun 23 11:26:43 PDT 2008
|
||
|
//
|
||
|
// (C) Copyright 2007, Google Inc.
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
//
|
||
|
///////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
#include "ambigs.h"
|
||
|
|
||
|
#include "applybox.h"
|
||
|
#include "boxread.h"
|
||
|
#include "control.h"
|
||
|
#include "permute.h"
|
||
|
#include "ratngs.h"
|
||
|
#include "reject.h"
|
||
|
#include "stopper.h"
|
||
|
#include "tesseractclass.h"
|
||
|
|
||
|
namespace tesseract {
|
||
|
|
||
|
// Sets flags necessary for ambigs training mode.
|
||
|
// Opens and returns the pointer to the output file.
|
||
|
FILE *Tesseract::init_ambigs_training(const STRING &fname) {
|
||
|
permute_only_top = 1; // use only top choice permuter
|
||
|
tessedit_tess_adaption_mode.set_value(0); // turn off adaption
|
||
|
tessedit_ok_mode.set_value(0); // turn off context checking
|
||
|
tessedit_enable_doc_dict.set_value(0); // turn off document dictionary
|
||
|
save_best_choices.set_value(1); // save individual char choices
|
||
|
stopper_no_acceptable_choices.set_value(1); // explore all segmentations
|
||
|
save_raw_choices.set_value(1); // save raw choices
|
||
|
|
||
|
// Open ambigs output file.
|
||
|
STRING output_fname = fname;
|
||
|
const char *lastdot = strrchr(output_fname.string(), '.');
|
||
|
if (lastdot != NULL) {
|
||
|
output_fname[lastdot - output_fname.string()] = '\0';
|
||
|
}
|
||
|
output_fname += ".txt";
|
||
|
FILE *output_file;
|
||
|
if (!(output_file = fopen(output_fname.string(), "a+"))) {
|
||
|
CANTOPENFILE.error("ambigs_training", EXIT,
|
||
|
"Can't open box file %s\n", output_fname.string());
|
||
|
}
|
||
|
return output_file;
|
||
|
}
|
||
|
|
||
|
// This function takes tif/box pair of files and runs recognition on the image,
|
||
|
// while making sure that the word bounds that tesseract identified roughly
|
||
|
// match to those specified by the input box file. For each word (ngram in a
|
||
|
// single bounding box from the input box file) it outputs the ocred result,
|
||
|
// the correct label, rating and certainty.
|
||
|
void Tesseract::ambigs_training_segmented(const STRING &fname,
|
||
|
PAGE_RES *page_res,
|
||
|
volatile ETEXT_DESC *monitor,
|
||
|
FILE *output_file) {
|
||
|
STRING box_fname = fname;
|
||
|
const char *lastdot = strrchr(box_fname.string(), '.');
|
||
|
if (lastdot != NULL) {
|
||
|
box_fname[lastdot - box_fname.string()] = '\0';
|
||
|
}
|
||
|
box_fname += ".box";
|
||
|
FILE *box_file;
|
||
|
if (!(box_file = fopen(box_fname.string(), "r"))) {
|
||
|
CANTOPENFILE.error("ambigs_training", EXIT,
|
||
|
"Can't open box file %s\n", box_fname.string());
|
||
|
}
|
||
|
|
||
|
static PAGE_RES_IT page_res_it;
|
||
|
page_res_it.page_res = page_res;
|
||
|
page_res_it.restart_page();
|
||
|
int x_min, y_min, x_max, y_max;
|
||
|
char label[UNICHAR_LEN * 10];
|
||
|
|
||
|
// Process all the words on this page.
|
||
|
while (page_res_it.word() != NULL &&
|
||
|
read_next_box(applybox_page, box_file, label,
|
||
|
&x_min, &y_min, &x_max, &y_max)) {
|
||
|
// Init bounding box of the current word bounding box and from box file.
|
||
|
TBOX box = TBOX(ICOORD(x_min, y_min), ICOORD(x_max, y_max));
|
||
|
TBOX word_box(page_res_it.word()->word->bounding_box());
|
||
|
bool one_word = true;
|
||
|
// Check whether the bounding box of the next word overlaps with the
|
||
|
// current box from box file.
|
||
|
while (page_res_it.next_word() != NULL &&
|
||
|
box.x_overlap(page_res_it.next_word()->word->bounding_box())) {
|
||
|
word_box = word_box.bounding_union(
|
||
|
page_res_it.next_word()->word->bounding_box());
|
||
|
page_res_it.forward();
|
||
|
one_word = false;
|
||
|
}
|
||
|
if (!word_box.major_overlap(box)) {
|
||
|
if (!word_box.x_overlap(box)) {
|
||
|
// We must be looking at the word that belongs in the "next" bounding
|
||
|
// box from the box file. The ngram that was supposed to appear in
|
||
|
// the current box read from the box file must have been dropped by
|
||
|
// tesseract as noise.
|
||
|
tprintf("Word %s was dropped as noise.\n", label);
|
||
|
continue; // stay on this blob, but read next box from box file
|
||
|
} else {
|
||
|
tprintf("Error: Insufficient overlap for word box"
|
||
|
" and box from file for %s\n", label);
|
||
|
word_box.print();
|
||
|
box.print();
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
// Skip recognizing the ngram if tesseract is sure it's not
|
||
|
// one word, otherwise run one recognition pass on this word.
|
||
|
if (!one_word) {
|
||
|
tprintf("Tesseract segmented %s as multiple words\n", label);
|
||
|
} else {
|
||
|
ambigs_classify_and_output(&page_res_it, label, output_file);
|
||
|
}
|
||
|
page_res_it.forward();
|
||
|
}
|
||
|
fclose(box_file);
|
||
|
}
|
||
|
|
||
|
// Run classify_word_pass1() on the current word. Output tesseract's raw choice
|
||
|
// as a result of the classification. For words labeled with a single unichar
|
||
|
// also output all alternatives from blob_choices of the best choice.
|
||
|
void Tesseract::ambigs_classify_and_output(PAGE_RES_IT *page_res_it,
|
||
|
const char *label,
|
||
|
FILE *output_file) {
|
||
|
int offset;
|
||
|
// Classify word.
|
||
|
classify_word_pass1(page_res_it->word(), page_res_it->row()->row,
|
||
|
page_res_it->block()->block,
|
||
|
FALSE, NULL, NULL);
|
||
|
WERD_CHOICE *best_choice = page_res_it->word()->best_choice;
|
||
|
ASSERT_HOST(best_choice != NULL);
|
||
|
ASSERT_HOST(best_choice->blob_choices() != NULL);
|
||
|
|
||
|
// Compute the number of unichars in the label.
|
||
|
int label_num_unichars = 0;
|
||
|
int step = 1; // should be non-zero on the first iteration
|
||
|
for (offset = 0; label[offset] != '\0' && step > 0;
|
||
|
step = getDict().getUnicharset().step(label + offset),
|
||
|
offset += step, ++label_num_unichars);
|
||
|
if (step == 0) {
|
||
|
tprintf("Not outputting illegal unichar %s\n", label);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Output all classifier choices for the unigrams (1-1 classifications).
|
||
|
if (label_num_unichars == 1 && best_choice->blob_choices()->length() == 1) {
|
||
|
BLOB_CHOICE_LIST_C_IT outer_blob_choice_it;
|
||
|
outer_blob_choice_it.set_to_list(best_choice->blob_choices());
|
||
|
BLOB_CHOICE_IT blob_choice_it;
|
||
|
blob_choice_it.set_to_list(outer_blob_choice_it.data());
|
||
|
for (blob_choice_it.mark_cycle_pt();
|
||
|
!blob_choice_it.cycled_list();
|
||
|
blob_choice_it.forward()) {
|
||
|
BLOB_CHOICE *blob_choice = blob_choice_it.data();
|
||
|
if (blob_choice->unichar_id() != INVALID_UNICHAR_ID) {
|
||
|
fprintf(output_file, "%s\t%s\t%.4f\t%.4f\n",
|
||
|
unicharset.id_to_unichar(blob_choice->unichar_id()),
|
||
|
label, blob_choice->rating(), blob_choice->certainty());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// Output the raw choice for succesful non 1-1 classifications.
|
||
|
getDict().PrintAmbigAlternatives(output_file, label, label_num_unichars);
|
||
|
}
|
||
|
|
||
|
} // namespace tesseract
|