tesseract/ccmain/thresholder.cpp

335 lines
12 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// File: thresholder.cpp
// Description: Base API for thresolding images in tesseract.
// Author: Ray Smith
// Created: Mon May 12 11:28:15 PDT 2008
//
// (C) Copyright 2008, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#include "allheaders.h"
#include "thresholder.h"
#include <string.h>
#include "otsuthr.h"
#include "openclwrapper.h"
namespace tesseract {
ImageThresholder::ImageThresholder()
: pix_(NULL),
image_width_(0), image_height_(0),
pix_channels_(0), pix_wpl_(0),
scale_(1), yres_(300), estimated_res_(300) {
SetRectangle(0, 0, 0, 0);
}
ImageThresholder::~ImageThresholder() {
Clear();
}
// Destroy the Pix if there is one, freeing memory.
void ImageThresholder::Clear() {
pixDestroy(&pix_);
}
// Return true if no image has been set.
bool ImageThresholder::IsEmpty() const {
return pix_ == NULL;
}
// SetImage makes a copy of all the image data, so it may be deleted
// immediately after this call.
// Greyscale of 8 and color of 24 or 32 bits per pixel may be given.
// Palette color images will not work properly and must be converted to
// 24 bit.
// Binary images of 1 bit per pixel may also be given but they must be
// byte packed with the MSB of the first byte being the first pixel, and a
// one pixel is WHITE. For binary images set bytes_per_pixel=0.
void ImageThresholder::SetImage(const unsigned char* imagedata,
int width, int height,
int bytes_per_pixel, int bytes_per_line) {
int bpp = bytes_per_pixel * 8;
if (bpp == 0) bpp = 1;
Pix* pix = pixCreate(width, height, bpp == 24 ? 32 : bpp);
l_uint32* data = pixGetData(pix);
int wpl = pixGetWpl(pix);
switch (bpp) {
case 1:
for (int y = 0; y < height; ++y, data += wpl, imagedata += bytes_per_line) {
for (int x = 0; x < width; ++x) {
if (imagedata[x / 8] & (0x80 >> (x % 8)))
CLEAR_DATA_BIT(data, x);
else
SET_DATA_BIT(data, x);
}
}
break;
case 8:
// Greyscale just copies the bytes in the right order.
for (int y = 0; y < height; ++y, data += wpl, imagedata += bytes_per_line) {
for (int x = 0; x < width; ++x)
SET_DATA_BYTE(data, x, imagedata[x]);
}
break;
case 24:
// Put the colors in the correct places in the line buffer.
for (int y = 0; y < height; ++y, imagedata += bytes_per_line) {
for (int x = 0; x < width; ++x, ++data) {
SET_DATA_BYTE(data, COLOR_RED, imagedata[3 * x]);
SET_DATA_BYTE(data, COLOR_GREEN, imagedata[3 * x + 1]);
SET_DATA_BYTE(data, COLOR_BLUE, imagedata[3 * x + 2]);
}
}
break;
case 32:
// Maintain byte order consistency across different endianness.
for (int y = 0; y < height; ++y, imagedata += bytes_per_line, data += wpl) {
for (int x = 0; x < width; ++x) {
data[x] = (imagedata[x * 4] << 24) | (imagedata[x * 4 + 1] << 16) |
(imagedata[x * 4 + 2] << 8) | imagedata[x * 4 + 3];
}
}
break;
default:
tprintf("Cannot convert RAW image to Pix with bpp = %d\n", bpp);
}
pixSetYRes(pix, 300);
SetImage(pix);
pixDestroy(&pix);
}
// Store the coordinates of the rectangle to process for later use.
// Doesn't actually do any thresholding.
void ImageThresholder::SetRectangle(int left, int top, int width, int height) {
rect_left_ = left;
rect_top_ = top;
rect_width_ = width;
rect_height_ = height;
}
// Get enough parameters to be able to rebuild bounding boxes in the
// original image (not just within the rectangle).
// Left and top are enough with top-down coordinates, but
// the height of the rectangle and the image are needed for bottom-up.
void ImageThresholder::GetImageSizes(int* left, int* top,
int* width, int* height,
int* imagewidth, int* imageheight) {
*left = rect_left_;
*top = rect_top_;
*width = rect_width_;
*height = rect_height_;
*imagewidth = image_width_;
*imageheight = image_height_;
}
// Pix vs raw, which to use? Pix is the preferred input for efficiency,
// since raw buffers are copied.
// SetImage for Pix clones its input, so the source pix may be pixDestroyed
// immediately after, but may not go away until after the Thresholder has
// finished with it.
void ImageThresholder::SetImage(const Pix* pix) {
if (pix_ != NULL)
pixDestroy(&pix_);
Pix* src = const_cast<Pix*>(pix);
int depth;
pixGetDimensions(src, &image_width_, &image_height_, &depth);
// Convert the image as necessary so it is one of binary, plain RGB, or
// 8 bit with no colormap. Guarantee that we always end up with our own copy,
// not just a clone of the input.
if (pixGetColormap(src)) {
Pix* tmp = pixRemoveColormap(src, REMOVE_CMAP_BASED_ON_SRC);
depth = pixGetDepth(tmp);
if (depth > 1 && depth < 8) {
pix_ = pixConvertTo8(tmp, false);
pixDestroy(&tmp);
} else {
pix_ = tmp;
}
} else if (depth > 1 && depth < 8) {
pix_ = pixConvertTo8(src, false);
} else {
pix_ = pixCopy(NULL, src);
}
depth = pixGetDepth(pix_);
pix_channels_ = depth / 8;
pix_wpl_ = pixGetWpl(pix_);
scale_ = 1;
estimated_res_ = yres_ = pixGetYRes(pix_);
Init();
}
// Threshold the source image as efficiently as possible to the output Pix.
// Creates a Pix and sets pix to point to the resulting pointer.
// Caller must use pixDestroy to free the created Pix.
/// Returns false on error.
bool ImageThresholder::ThresholdToPix(PageSegMode pageseg_mode, Pix** pix) {
if (image_width_ > MAX_INT16 || image_height_ > MAX_INT16) {
tprintf("Image too large: (%d, %d)\n", image_width_, image_height_);
return false;
}
if (pix_channels_ == 0) {
// We have a binary image, but it still has to be copied, as this API
// allows the caller to modify the output.
Pix* original = GetPixRect();
*pix = pixCopy(nullptr, original);
pixDestroy(&original);
} else {
OtsuThresholdRectToPix(pix_, pix);
}
return true;
}
// Gets a pix that contains an 8 bit threshold value at each pixel. The
// returned pix may be an integer reduction of the binary image such that
// the scale factor may be inferred from the ratio of the sizes, even down
// to the extreme of a 1x1 pixel thresholds image.
// Ideally the 8 bit threshold should be the exact threshold used to generate
// the binary image in ThresholdToPix, but this is not a hard constraint.
// Returns NULL if the input is binary. PixDestroy after use.
Pix* ImageThresholder::GetPixRectThresholds() {
if (IsBinary()) return NULL;
Pix* pix_grey = GetPixRectGrey();
int width = pixGetWidth(pix_grey);
int height = pixGetHeight(pix_grey);
int* thresholds;
int* hi_values;
OtsuThreshold(pix_grey, 0, 0, width, height, &thresholds, &hi_values);
pixDestroy(&pix_grey);
Pix* pix_thresholds = pixCreate(width, height, 8);
int threshold = thresholds[0] > 0 ? thresholds[0] : 128;
pixSetAllArbitrary(pix_thresholds, threshold);
delete [] thresholds;
delete [] hi_values;
return pix_thresholds;
}
// Common initialization shared between SetImage methods.
void ImageThresholder::Init() {
SetRectangle(0, 0, image_width_, image_height_);
}
// Get a clone/copy of the source image rectangle.
// The returned Pix must be pixDestroyed.
// This function will be used in the future by the page layout analysis, and
// the layout analysis that uses it will only be available with Leptonica,
// so there is no raw equivalent.
Pix* ImageThresholder::GetPixRect() {
if (IsFullImage()) {
// Just clone the whole thing.
return pixClone(pix_);
} else {
// Crop to the given rectangle.
Box* box = boxCreate(rect_left_, rect_top_, rect_width_, rect_height_);
Pix* cropped = pixClipRectangle(pix_, box, NULL);
boxDestroy(&box);
return cropped;
}
}
// Get a clone/copy of the source image rectangle, reduced to greyscale,
// and at the same resolution as the output binary.
// The returned Pix must be pixDestroyed.
// Provided to the classifier to extract features from the greyscale image.
Pix* ImageThresholder::GetPixRectGrey() {
Pix* pix = GetPixRect(); // May have to be reduced to grey.
int depth = pixGetDepth(pix);
if (depth != 8) {
Pix* result = depth < 8 ? pixConvertTo8(pix, false)
: pixConvertRGBToLuminance(pix);
pixDestroy(&pix);
return result;
}
return pix;
}
// Otsu thresholds the rectangle, taking the rectangle from *this.
void ImageThresholder::OtsuThresholdRectToPix(Pix* src_pix,
Pix** out_pix) const {
PERF_COUNT_START("OtsuThresholdRectToPix")
int* thresholds;
int* hi_values;
int num_channels = OtsuThreshold(src_pix, rect_left_, rect_top_, rect_width_,
rect_height_, &thresholds, &hi_values);
// only use opencl if compiled w/ OpenCL and selected device is opencl
#ifdef USE_OPENCL
OpenclDevice od;
if ((num_channels == 4 || num_channels == 1) &&
od.selectedDeviceIsOpenCL() && rect_top_ == 0 && rect_left_ == 0 ) {
2016-12-07 05:45:49 +08:00
od.ThresholdRectToPixOCL((unsigned char*)pixGetData(src_pix), num_channels,
pixGetWpl(src_pix) * 4, thresholds, hi_values,
out_pix /*pix_OCL*/, rect_height_, rect_width_,
rect_top_, rect_left_);
} else {
#endif
ThresholdRectToPix(src_pix, num_channels, thresholds, hi_values, out_pix);
#ifdef USE_OPENCL
}
#endif
delete [] thresholds;
delete [] hi_values;
PERF_COUNT_END
}
/// Threshold the rectangle, taking everything except the src_pix
/// from the class, using thresholds/hi_values to the output pix.
/// NOTE that num_channels is the size of the thresholds and hi_values
// arrays and also the bytes per pixel in src_pix.
void ImageThresholder::ThresholdRectToPix(Pix* src_pix,
int num_channels,
const int* thresholds,
const int* hi_values,
Pix** pix) const {
PERF_COUNT_START("ThresholdRectToPix")
*pix = pixCreate(rect_width_, rect_height_, 1);
uinT32* pixdata = pixGetData(*pix);
int wpl = pixGetWpl(*pix);
int src_wpl = pixGetWpl(src_pix);
uinT32* srcdata = pixGetData(src_pix);
for (int y = 0; y < rect_height_; ++y) {
const uinT32* linedata = srcdata + (y + rect_top_) * src_wpl;
uinT32* pixline = pixdata + y * wpl;
for (int x = 0; x < rect_width_; ++x) {
bool white_result = true;
for (int ch = 0; ch < num_channels; ++ch) {
int pixel = GET_DATA_BYTE(const_cast<void*>(
2017-05-11 06:40:31 +08:00
static_cast<const void *>(linedata)),
(x + rect_left_) * num_channels + ch);
if (hi_values[ch] >= 0 &&
(pixel > thresholds[ch]) == (hi_values[ch] == 0)) {
white_result = false;
break;
}
}
if (white_result)
CLEAR_DATA_BIT(pixline, x);
else
SET_DATA_BIT(pixline, x);
}
}
PERF_COUNT_END
}
} // namespace tesseract.