tesseract/src/training/tesstrain.py

102 lines
3.9 KiB
Python
Raw Normal View History

# (C) Copyright 2014, Google Inc.
# (C) Copyright 2018, James R Barlow
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This script provides an easy way to execute various phases of training
# Tesseract. For a detailed description of the phases, see
# https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract
#
import sys, os, subprocess, logging
sys.path.insert(0, os.path.dirname(__file__))
from tesstrain_utils import (
parse_flags,
initialize_fontconfig,
phase_I_generate_image,
phase_UP_generate_unicharset,
phase_E_extract_features,
make_lstmdata,
cleanup,
)
import language_specific
log = logging.getLogger()
def setup_logging(logfile):
log.setLevel(logging.DEBUG)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console_formatter = logging.Formatter(
"[%(asctime)s] %(levelname)s - %(message)s", datefmt="%H:%M:%S"
)
console.setFormatter(console_formatter)
log.addHandler(console)
logfile = logging.FileHandler(logfile)
logfile.setLevel(logging.DEBUG)
logfile_formatter = logging.Formatter(
"[%(asctime)s] - %(levelname)s - %(name)s - %(message)s"
)
logfile.setFormatter(logfile_formatter)
log.addHandler(logfile)
def main():
ctx = parse_flags()
setup_logging(ctx.log_file)
if not ctx.linedata:
log.error("--linedata_only is required since only LSTM is supported")
sys.exit(1)
log.info(f"=== Starting training for language {ctx.lang_code}")
ctx = language_specific.set_lang_specific_parameters(ctx, ctx.lang_code)
initialize_fontconfig(ctx)
phase_I_generate_image(ctx, par_factor=8)
phase_UP_generate_unicharset(ctx)
if ctx.linedata:
phase_E_extract_features(ctx, ["--psm", "6", "lstm.train"], "lstmf")
make_lstmdata(ctx)
cleanup(ctx)
log.info("All done!")
return 0
if __name__ == "__main__":
main()
# _rc0 = subprocess.call(["tlog","\n=== Starting training for language '"+str(LANG_CODE.val)+"'"],shell=True)
# _rc0 = subprocess.call(["source",os.popen("dirname "+__file__).read().rstrip("\n")+"/language-specific.sh"],shell=True)
# _rc0 = subprocess.call(["set_lang_specific_parameters",str(LANG_CODE.val)],shell=True)
# _rc0 = subprocess.call(["initialize_fontconfig"],shell=True)
# _rc0 = subprocess.call(["phase_I_generate_image","8"],shell=True)
# _rc0 = subprocess.call(["phase_UP_generate_unicharset"],shell=True)
# if (LINEDATA ):
# subprocess.call(["phase_E_extract_features"," --psm 6 lstm.train ","8","lstmf"],shell=True)
# subprocess.call(["make__lstmdata"],shell=True)
# subprocess.call(["tlog","\nCreated starter traineddata for language '"+str(LANG_CODE.val)+"'\n"],shell=True)
# subprocess.call(["tlog","\nRun lstmtraining to do the LSTM training for language '"+str(LANG_CODE.val)+"'\n"],shell=True)
# else:
# subprocess.call(["phase_D_generate_dawg"],shell=True)
# subprocess.call(["phase_E_extract_features","box.train","8","tr"],shell=True)
# subprocess.call(["phase_C_cluster_prototypes",str(TRAINING_DIR.val)+"/"+str(LANG_CODE.val)+".normproto"],shell=True)
# if (str(ENABLE_SHAPE_CLUSTERING.val) == "y" ):
# subprocess.call(["phase_S_cluster_shapes"],shell=True)
# subprocess.call(["phase_M_cluster_microfeatures"],shell=True)
# subprocess.call(["phase_B_generate_ambiguities"],shell=True)
# subprocess.call(["make__traineddata"],shell=True)
# subprocess.call(["tlog","\nCompleted training for language '"+str(LANG_CODE.val)+"'\n"],shell=True)