tesseract/classify/intmatcher.cpp

1538 lines
53 KiB
C++
Raw Normal View History

/******************************************************************************
** Filename: intmatcher.c
** Purpose: Generic high level classification routines.
** Author: Robert Moss
** History: Wed Feb 13 17:35:28 MST 1991, RWM, Created.
** Mon Mar 11 16:33:02 MST 1991, RWM, Modified to add
** support for adaptive matching.
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
/**----------------------------------------------------------------------------
Include Files and Type Defines
----------------------------------------------------------------------------**/
// Include automatically generated configuration file if running autoconf.
#ifdef HAVE_CONFIG_H
#include "config_auto.h"
#endif
#include "intmatcher.h"
#include "intproto.h"
#include "tordvars.h"
#include "callcpp.h"
#include "scrollview.h"
#include "globals.h"
#include "classify.h"
#include <math.h>
#define CLASS_MASK_SIZE ((MAX_NUM_CLASSES*NUM_BITS_PER_CLASS \
+BITS_PER_WERD-1)/BITS_PER_WERD)
/**----------------------------------------------------------------------------
Global Data Definitions and Declarations
----------------------------------------------------------------------------**/
#define SE_TABLE_BITS 9
#define SE_TABLE_SIZE 512
#define TEMPLATE_CACHE 2
static uinT8 SimilarityEvidenceTable[SE_TABLE_SIZE];
static uinT8 offset_table[256] = {
255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
static uinT8 next_table[256] = {
0, 0, 0, 0x2, 0, 0x4, 0x4, 0x6, 0, 0x8, 0x8, 0x0a, 0x08, 0x0c, 0x0c, 0x0e,
0, 0x10, 0x10, 0x12, 0x10, 0x14, 0x14, 0x16, 0x10, 0x18, 0x18, 0x1a, 0x18,
0x1c, 0x1c, 0x1e,
0, 0x20, 0x20, 0x22, 0x20, 0x24, 0x24, 0x26, 0x20, 0x28, 0x28, 0x2a, 0x28,
0x2c, 0x2c, 0x2e,
0x20, 0x30, 0x30, 0x32, 0x30, 0x34, 0x34, 0x36, 0x30, 0x38, 0x38, 0x3a,
0x38, 0x3c, 0x3c, 0x3e,
0, 0x40, 0x40, 0x42, 0x40, 0x44, 0x44, 0x46, 0x40, 0x48, 0x48, 0x4a, 0x48,
0x4c, 0x4c, 0x4e,
0x40, 0x50, 0x50, 0x52, 0x50, 0x54, 0x54, 0x56, 0x50, 0x58, 0x58, 0x5a,
0x58, 0x5c, 0x5c, 0x5e,
0x40, 0x60, 0x60, 0x62, 0x60, 0x64, 0x64, 0x66, 0x60, 0x68, 0x68, 0x6a,
0x68, 0x6c, 0x6c, 0x6e,
0x60, 0x70, 0x70, 0x72, 0x70, 0x74, 0x74, 0x76, 0x70, 0x78, 0x78, 0x7a,
0x78, 0x7c, 0x7c, 0x7e,
0, 0x80, 0x80, 0x82, 0x80, 0x84, 0x84, 0x86, 0x80, 0x88, 0x88, 0x8a, 0x88,
0x8c, 0x8c, 0x8e,
0x80, 0x90, 0x90, 0x92, 0x90, 0x94, 0x94, 0x96, 0x90, 0x98, 0x98, 0x9a,
0x98, 0x9c, 0x9c, 0x9e,
0x80, 0xa0, 0xa0, 0xa2, 0xa0, 0xa4, 0xa4, 0xa6, 0xa0, 0xa8, 0xa8, 0xaa,
0xa8, 0xac, 0xac, 0xae,
0xa0, 0xb0, 0xb0, 0xb2, 0xb0, 0xb4, 0xb4, 0xb6, 0xb0, 0xb8, 0xb8, 0xba,
0xb8, 0xbc, 0xbc, 0xbe,
0x80, 0xc0, 0xc0, 0xc2, 0xc0, 0xc4, 0xc4, 0xc6, 0xc0, 0xc8, 0xc8, 0xca,
0xc8, 0xcc, 0xcc, 0xce,
0xc0, 0xd0, 0xd0, 0xd2, 0xd0, 0xd4, 0xd4, 0xd6, 0xd0, 0xd8, 0xd8, 0xda,
0xd8, 0xdc, 0xdc, 0xde,
0xc0, 0xe0, 0xe0, 0xe2, 0xe0, 0xe4, 0xe4, 0xe6, 0xe0, 0xe8, 0xe8, 0xea,
0xe8, 0xec, 0xec, 0xee,
0xe0, 0xf0, 0xf0, 0xf2, 0xf0, 0xf4, 0xf4, 0xf6, 0xf0, 0xf8, 0xf8, 0xfa,
0xf8, 0xfc, 0xfc, 0xfe
};
static uinT32 EvidenceTableMask;
static uinT32 MultTruncShiftBits;
static uinT32 TableTruncShiftBits;
uinT32 EvidenceMultMask;
static inT16 LocalMatcherMultiplier;
INT_VAR(classify_class_pruner_threshold, 229,
"Class Pruner Threshold 0-255: ");
INT_VAR(classify_class_pruner_multiplier, 30,
"Class Pruner Multiplier 0-255: ");
INT_VAR(classify_integer_matcher_multiplier, 14,
"Integer Matcher Multiplier 0-255: ");
INT_VAR(classify_int_theta_fudge, 128,
"Integer Matcher Theta Fudge 0-255: ");
INT_VAR(classify_cp_cutoff_strength, 7,
"Class Pruner CutoffStrength: ");
INT_VAR(classify_evidence_table_bits, 9,
"Bits in Similarity to Evidence Lookup 8-9: ");
INT_VAR(classify_int_evidence_trunc_bits, 14,
"Integer Evidence Truncation Bits (Distance) 8-14: ");
double_VAR(classify_se_exponential_multiplier, 0,
"Similarity to Evidence Table Exponential Multiplier: ");
double_VAR(classify_similarity_center, 0.0075,
"Center of Similarity Curve: ");
INT_VAR(classify_adapt_proto_thresh, 230,
"Threshold for good protos during adaptive 0-255: ");
INT_VAR(classify_adapt_feature_thresh, 230,
"Threshold for good features during adaptive 0-255: ");
BOOL_VAR(disable_character_fragments, FALSE,
"Do not include character fragments in the"
" results of the classifier");
BOOL_VAR(matcher_debug_separate_windows, FALSE,
"Use two different windows for debugging the matching: "
"One for the protos and one for the features.");
int protoword_lookups;
int zero_protowords;
int proto_shifts;
int set_proto_bits;
int config_shifts;
int set_config_bits;
/**----------------------------------------------------------------------------
Public Code
----------------------------------------------------------------------------**/
/*---------------------------------------------------------------------------*/
namespace tesseract {
int Classify::ClassPruner(INT_TEMPLATES IntTemplates,
inT16 NumFeatures,
INT_FEATURE_ARRAY Features,
CLASS_NORMALIZATION_ARRAY NormalizationFactors,
CLASS_CUTOFF_ARRAY ExpectedNumFeatures,
CLASS_PRUNER_RESULTS Results,
int Debug) {
/*
** Parameters:
** IntTemplates Class pruner tables
** NumFeatures Number of features in blob
** Features Array of features
** NormalizationFactors Array of fudge factors from blob
** normalization process
** (by CLASS_INDEX)
** ExpectedNumFeatures Array of expected number of features
** for each class
** (by CLASS_INDEX)
** Results Sorted Array of pruned classes
** (by CLASS_ID)
** Debug Debugger flag: 1=debugger on
** Globals:
** classify_class_pruner_threshold Cutoff threshold
** classify_class_pruner_multiplier Normalization factor multiplier
** Operation:
** Prune the classes using a modified fast match table.
** Return a sorted list of classes along with the number
** of pruned classes in that list.
** Return: Number of pruned classes.
** Exceptions: none
** History: Tue Feb 19 10:24:24 MST 1991, RWM, Created.
*/
uinT32 PrunerWord;
inT32 class_index; //index to class
int Word;
uinT32 *BasePrunerAddress;
uinT32 feature_address; //current feature index
INT_FEATURE feature; //current feature
CLASS_PRUNER *ClassPruner;
int PrunerSet;
int NumPruners;
inT32 feature_index; //current feature
static int ClassCount[MAX_NUM_CLASSES];
static int NormCount[MAX_NUM_CLASSES];
static int SortKey[MAX_NUM_CLASSES + 1];
static int SortIndex[MAX_NUM_CLASSES + 1];
int out_class;
int MaxNumClasses;
int MaxCount;
int NumClasses;
FLOAT32 max_rating; //max allowed rating
int *ClassCountPtr;
CLASS_ID class_id;
MaxNumClasses = IntTemplates->NumClasses;
/* Clear Class Counts */
ClassCountPtr = &(ClassCount[0]);
for (class_id = 0; class_id < MaxNumClasses; class_id++) {
*ClassCountPtr++ = 0;
}
/* Update Class Counts */
NumPruners = IntTemplates->NumClassPruners;
for (feature_index = 0; feature_index < NumFeatures; feature_index++) {
feature = &Features[feature_index];
feature_address = (((feature->X * NUM_CP_BUCKETS >> 8) * NUM_CP_BUCKETS +
(feature->Y * NUM_CP_BUCKETS >> 8)) * NUM_CP_BUCKETS +
(feature->Theta * NUM_CP_BUCKETS >> 8)) << 1;
ClassPruner = IntTemplates->ClassPruner;
class_index = 0;
for (PrunerSet = 0; PrunerSet < NumPruners; PrunerSet++, ClassPruner++) {
BasePrunerAddress = (uinT32 *) (*ClassPruner) + feature_address;
for (Word = 0; Word < WERDS_PER_CP_VECTOR; Word++) {
PrunerWord = *BasePrunerAddress++;
// This inner loop is unrolled to speed up the ClassPruner.
// Currently gcc would not unroll it unless it is set to O3
// level of optimization or -funroll-loops is specified.
/*
uinT32 class_mask = (1 << NUM_BITS_PER_CLASS) - 1;
for (int bit = 0; bit < BITS_PER_WERD/NUM_BITS_PER_CLASS; bit++) {
ClassCount[class_index++] += PrunerWord & class_mask;
PrunerWord >>= NUM_BITS_PER_CLASS;
}
*/
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
PrunerWord >>= 2;
ClassCount[class_index++] += cp_maps[PrunerWord & 3];
}
}
}
/* Adjust Class Counts for Number of Expected Features */
for (class_id = 0; class_id < MaxNumClasses; class_id++) {
if (NumFeatures < ExpectedNumFeatures[class_id]) {
int deficit = ExpectedNumFeatures[class_id] - NumFeatures;
ClassCount[class_id] -= ClassCount[class_id] * deficit /
(NumFeatures*classify_cp_cutoff_strength + deficit);
}
if (!unicharset.get_enabled(class_id))
ClassCount[class_id] = 0; // This char is disabled!
// Do not include character fragments in the class pruner
// results if disable_character_fragments is true.
if (disable_character_fragments && unicharset.get_fragment(class_id)) {
ClassCount[class_id] = 0;
}
}
/* Adjust Class Counts for Normalization Factors */
MaxCount = 0;
for (class_id = 0; class_id < MaxNumClasses; class_id++) {
NormCount[class_id] = ClassCount[class_id]
- ((classify_class_pruner_multiplier * NormalizationFactors[class_id]) >> 8)
* cp_maps[3] / 3;
if (NormCount[class_id] > MaxCount &&
// This additional check is added in order to ensure that
// the classifier will return at least one non-fragmented
// character match.
// TODO(daria): verify that this helps accuracy and does not
// hurt performance.
!unicharset.get_fragment(class_id)) {
MaxCount = NormCount[class_id];
}
}
/* Prune Classes */
MaxCount *= classify_class_pruner_threshold;
MaxCount >>= 8;
/* Select Classes */
if (MaxCount < 1)
MaxCount = 1;
NumClasses = 0;
for (class_id = 0; class_id < MaxNumClasses; class_id++) {
if (NormCount[class_id] >= MaxCount) {
NumClasses++;
SortIndex[NumClasses] = class_id;
SortKey[NumClasses] = NormCount[class_id];
}
}
/* Sort Classes using Heapsort Algorithm */
if (NumClasses > 1)
HeapSort(NumClasses, SortKey, SortIndex);
if (tord_display_ratings > 1) {
cprintf ("CP:%d classes, %d features:\n", NumClasses, NumFeatures);
for (class_id = 0; class_id < NumClasses; class_id++) {
cprintf ("%s:C=%d, E=%d, N=%d, Rat=%d\n",
unicharset.debug_str(SortIndex[NumClasses - class_id]).string(),
ClassCount[SortIndex[NumClasses - class_id]],
ExpectedNumFeatures[SortIndex[NumClasses - class_id]],
SortKey[NumClasses - class_id],
1010 - 1000 * SortKey[NumClasses - class_id] /
(cp_maps[3] * NumFeatures));
}
if (tord_display_ratings > 2) {
NumPruners = IntTemplates->NumClassPruners;
for (feature_index = 0; feature_index < NumFeatures;
feature_index++) {
cprintf ("F=%3d,", feature_index);
feature = &Features[feature_index];
feature_address =
(((feature->X * NUM_CP_BUCKETS >> 8) * NUM_CP_BUCKETS +
(feature->Y * NUM_CP_BUCKETS >> 8)) * NUM_CP_BUCKETS +
(feature->Theta * NUM_CP_BUCKETS >> 8)) << 1;
ClassPruner = IntTemplates->ClassPruner;
class_index = 0;
for (PrunerSet = 0; PrunerSet < NumPruners;
PrunerSet++, ClassPruner++) {
BasePrunerAddress = (uinT32 *) (*ClassPruner)
+ feature_address;
for (Word = 0; Word < WERDS_PER_CP_VECTOR; Word++) {
PrunerWord = *BasePrunerAddress++;
for (class_id = 0; class_id < 16; class_id++, class_index++) {
if (NormCount[class_index] >= MaxCount)
cprintf (" %s=%d,",
unicharset.id_to_unichar(class_index),
PrunerWord & 3);
PrunerWord >>= 2;
}
}
}
cprintf ("\n");
}
cprintf ("Adjustments:");
for (class_id = 0; class_id < MaxNumClasses; class_id++) {
if (NormCount[class_id] > MaxCount)
cprintf (" %s=%d,",
unicharset.id_to_unichar(class_id),
-((classify_class_pruner_multiplier *
NormalizationFactors[class_id]) >> 8) * cp_maps[3] / 3);
}
cprintf ("\n");
}
}
/* Set Up Results */
max_rating = 0.0f;
for (class_id = 0, out_class = 0; class_id < NumClasses; class_id++) {
Results[out_class].Class = SortIndex[NumClasses - class_id];
Results[out_class].Rating =
1.0 - SortKey[NumClasses -
class_id] / ((float) cp_maps[3] * NumFeatures);
out_class++;
}
NumClasses = out_class;
return NumClasses;
}
} // namespace tesseract
/*---------------------------------------------------------------------------*/
void IntegerMatcher(INT_CLASS ClassTemplate,
BIT_VECTOR ProtoMask,
BIT_VECTOR ConfigMask,
uinT16 BlobLength,
inT16 NumFeatures,
INT_FEATURE_ARRAY Features,
uinT8 NormalizationFactor,
INT_RESULT Result,
int Debug) {
/*
** Parameters:
** ClassTemplate Prototypes & tables for a class
** BlobLength Length of unormalized blob
** NumFeatures Number of features in blob
** Features Array of features
** NormalizationFactor Fudge factor from blob
** normalization process
** Result Class rating & configuration:
** (0.0 -> 1.0), 0=good, 1=bad
** Debug Debugger flag: 1=debugger on
** Globals:
** LocalMatcherMultiplier Normalization factor multiplier
** classify_int_theta_fudge Theta fudge factor used for
** evidence calculation
** Operation:
** IntegerMatcher returns the best configuration and rating
** for a single class. The class matched against is determined
** by the uniqueness of the ClassTemplate parameter. The
** best rating and its associated configuration are returned.
** Return:
** Exceptions: none
** History: Tue Feb 19 16:36:23 MST 1991, RWM, Created.
*/
static uinT8 FeatureEvidence[MAX_NUM_CONFIGS];
static int SumOfFeatureEvidence[MAX_NUM_CONFIGS];
static uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX];
int Feature;
int BestMatch;
if (MatchDebuggingOn (Debug))
cprintf ("Integer Matcher -------------------------------------------\n");
IMClearTables(ClassTemplate, SumOfFeatureEvidence, ProtoEvidence);
Result->FeatureMisses = 0;
for (Feature = 0; Feature < NumFeatures; Feature++) {
int csum = IMUpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask,
Feature, &(Features[Feature]),
FeatureEvidence, SumOfFeatureEvidence,
ProtoEvidence, Debug);
// Count features that were missed over all configs.
if (csum == 0)
Result->FeatureMisses++;
}
#ifndef GRAPHICS_DISABLED
if (PrintProtoMatchesOn (Debug) || PrintMatchSummaryOn (Debug))
IMDebugFeatureProtoError(ClassTemplate,
ProtoMask,
ConfigMask,
SumOfFeatureEvidence,
ProtoEvidence,
NumFeatures,
Debug);
if (DisplayProtoMatchesOn (Debug))
IMDisplayProtoDebugInfo(ClassTemplate,
ProtoMask,
ConfigMask,
ProtoEvidence,
Debug);
if (DisplayFeatureMatchesOn (Debug))
IMDisplayFeatureDebugInfo(ClassTemplate,
ProtoMask,
ConfigMask,
NumFeatures,
Features,
Debug);
#endif
IMUpdateSumOfProtoEvidences(ClassTemplate,
ConfigMask,
SumOfFeatureEvidence,
ProtoEvidence,
NumFeatures);
IMNormalizeSumOfEvidences(ClassTemplate,
SumOfFeatureEvidence,
NumFeatures,
NumFeatures);
BestMatch =
IMFindBestMatch(ClassTemplate,
SumOfFeatureEvidence,
BlobLength,
NormalizationFactor,
Result);
#ifndef GRAPHICS_DISABLED
if (PrintMatchSummaryOn (Debug))
IMDebugBestMatch(BestMatch, Result, BlobLength, NormalizationFactor);
if (MatchDebuggingOn (Debug))
cprintf ("Match Complete --------------------------------------------\n");
#endif
}
/*---------------------------------------------------------------------------*/
int FindGoodProtos(INT_CLASS ClassTemplate,
BIT_VECTOR ProtoMask,
BIT_VECTOR ConfigMask,
uinT16 BlobLength,
inT16 NumFeatures,
INT_FEATURE_ARRAY Features,
PROTO_ID *ProtoArray,
int Debug) {
/*
** Parameters:
** ClassTemplate Prototypes & tables for a class
** ProtoMask AND Mask for proto word
** ConfigMask AND Mask for config word
** BlobLength Length of unormalized blob
** NumFeatures Number of features in blob
** Features Array of features
** ProtoArray Array of good protos
** Debug Debugger flag: 1=debugger on
** Globals:
** LocalMatcherMultiplier Normalization factor multiplier
** classify_int_theta_fudge Theta fudge factor used for
** evidence calculation
** classify_adapt_proto_thresh Threshold for good protos
** Operation:
** FindGoodProtos finds all protos whose normalized proto-evidence
** exceed classify_adapt_proto_thresh. The list is ordered by increasing
** proto id number.
** Return:
** Number of good protos in ProtoArray.
** Exceptions: none
** History: Tue Mar 12 17:09:26 MST 1991, RWM, Created
*/
static uinT8 FeatureEvidence[MAX_NUM_CONFIGS];
static int SumOfFeatureEvidence[MAX_NUM_CONFIGS];
static uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX];
int Feature;
register uinT8 *UINT8Pointer;
register int ProtoIndex;
int NumProtos;
int NumGoodProtos;
uinT16 ActualProtoNum;
register int Temp;
/* DEBUG opening heading */
if (MatchDebuggingOn (Debug))
cprintf
("Find Good Protos -------------------------------------------\n");
IMClearTables(ClassTemplate, SumOfFeatureEvidence, ProtoEvidence);
for (Feature = 0; Feature < NumFeatures; Feature++)
IMUpdateTablesForFeature (ClassTemplate, ProtoMask, ConfigMask, Feature,
&(Features[Feature]), FeatureEvidence,
SumOfFeatureEvidence, ProtoEvidence, Debug);
#ifndef GRAPHICS_DISABLED
if (PrintProtoMatchesOn (Debug) || PrintMatchSummaryOn (Debug))
IMDebugFeatureProtoError(ClassTemplate,
ProtoMask,
ConfigMask,
SumOfFeatureEvidence,
ProtoEvidence,
NumFeatures,
Debug);
#endif
/* Average Proto Evidences & Find Good Protos */
NumProtos = ClassTemplate->NumProtos;
NumGoodProtos = 0;
for (ActualProtoNum = 0; ActualProtoNum < NumProtos; ActualProtoNum++) {
/* Compute Average for Actual Proto */
Temp = 0;
UINT8Pointer = &(ProtoEvidence[ActualProtoNum][0]);
for (ProtoIndex = ClassTemplate->ProtoLengths[ActualProtoNum];
ProtoIndex > 0; ProtoIndex--, UINT8Pointer++)
Temp += *UINT8Pointer;
Temp /= ClassTemplate->ProtoLengths[ActualProtoNum];
/* Find Good Protos */
if (Temp >= classify_adapt_proto_thresh) {
*ProtoArray = ActualProtoNum;
ProtoArray++;
NumGoodProtos++;
}
}
if (MatchDebuggingOn (Debug))
cprintf ("Match Complete --------------------------------------------\n");
return NumGoodProtos;
}
/*---------------------------------------------------------------------------*/
int FindBadFeatures(INT_CLASS ClassTemplate,
BIT_VECTOR ProtoMask,
BIT_VECTOR ConfigMask,
uinT16 BlobLength,
inT16 NumFeatures,
INT_FEATURE_ARRAY Features,
FEATURE_ID *FeatureArray,
int Debug) {
/*
** Parameters:
** ClassTemplate Prototypes & tables for a class
** ProtoMask AND Mask for proto word
** ConfigMask AND Mask for config word
** BlobLength Length of unormalized blob
** NumFeatures Number of features in blob
** Features Array of features
** FeatureArray Array of bad features
** Debug Debugger flag: 1=debugger on
** Globals:
** LocalMatcherMultiplier Normalization factor multiplier
** classify_int_theta_fudge Theta fudge factor used for
** evidence calculation
** classify_adapt_feature_thresh Threshold for bad features
** Operation:
** FindBadFeatures finds all features whose maximum feature-evidence
** was less than classify_adapt_feature_thresh. The list is ordered by increasing
** feature number.
** Return:
** Number of bad features in FeatureArray.
** Exceptions: none
** History: Tue Mar 12 17:09:26 MST 1991, RWM, Created
*/
static uinT8 FeatureEvidence[MAX_NUM_CONFIGS];
static int SumOfFeatureEvidence[MAX_NUM_CONFIGS];
static uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX];
int Feature;
register uinT8 *UINT8Pointer;
register int ConfigNum;
int NumConfigs;
int NumBadFeatures;
register int Temp;
/* DEBUG opening heading */
if (MatchDebuggingOn (Debug))
cprintf
("Find Bad Features -------------------------------------------\n");
IMClearTables(ClassTemplate, SumOfFeatureEvidence, ProtoEvidence);
NumBadFeatures = 0;
NumConfigs = ClassTemplate->NumConfigs;
for (Feature = 0; Feature < NumFeatures; Feature++) {
IMUpdateTablesForFeature (ClassTemplate, ProtoMask, ConfigMask, Feature,
&(Features[Feature]), FeatureEvidence,
SumOfFeatureEvidence, ProtoEvidence, Debug);
/* Find Best Evidence for Current Feature */
Temp = 0;
UINT8Pointer = FeatureEvidence;
for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++, UINT8Pointer++)
if (*UINT8Pointer > Temp)
Temp = *UINT8Pointer;
/* Find Bad Features */
if (Temp < classify_adapt_feature_thresh) {
*FeatureArray = Feature;
FeatureArray++;
NumBadFeatures++;
}
}
#ifndef GRAPHICS_DISABLED
if (PrintProtoMatchesOn (Debug) || PrintMatchSummaryOn (Debug))
IMDebugFeatureProtoError(ClassTemplate,
ProtoMask,
ConfigMask,
SumOfFeatureEvidence,
ProtoEvidence,
NumFeatures,
Debug);
#endif
if (MatchDebuggingOn (Debug))
cprintf ("Match Complete --------------------------------------------\n");
return NumBadFeatures;
}
/*---------------------------------------------------------------------------*/
void InitIntegerMatcher() {
int i;
uinT32 IntSimilarity;
double Similarity;
double Evidence;
double ScaleFactor;
/* Set default mode of operation of IntegerMatcher */
SetCharNormMatch();
/* Initialize table for evidence to similarity lookup */
for (i = 0; i < SE_TABLE_SIZE; i++) {
IntSimilarity = i << (27 - SE_TABLE_BITS);
Similarity = ((double) IntSimilarity) / 65536.0 / 65536.0;
Evidence = Similarity / classify_similarity_center;
Evidence *= Evidence;
Evidence += 1.0;
Evidence = 1.0 / Evidence;
Evidence *= 255.0;
if (classify_se_exponential_multiplier > 0.0) {
ScaleFactor = 1.0 - exp (-classify_se_exponential_multiplier) *
exp (classify_se_exponential_multiplier * ((double) i / SE_TABLE_SIZE));
if (ScaleFactor > 1.0)
ScaleFactor = 1.0;
if (ScaleFactor < 0.0)
ScaleFactor = 0.0;
Evidence *= ScaleFactor;
}
SimilarityEvidenceTable[i] = (uinT8) (Evidence + 0.5);
}
/* Initialize evidence computation variables */
EvidenceTableMask =
((1 << classify_evidence_table_bits) - 1) << (9 - classify_evidence_table_bits);
MultTruncShiftBits = (14 - classify_int_evidence_trunc_bits);
TableTruncShiftBits = (27 - SE_TABLE_BITS - (MultTruncShiftBits << 1));
EvidenceMultMask = ((1 << classify_int_evidence_trunc_bits) - 1);
}
/*-------------------------------------------------------------------------*/
void PrintIntMatcherStats(FILE *f) {
fprintf (f, "protoword_lookups=%d, zero_protowords=%d, proto_shifts=%d\n",
protoword_lookups, zero_protowords, proto_shifts);
fprintf (f, "set_proto_bits=%d, config_shifts=%d, set_config_bits=%d\n",
set_proto_bits, config_shifts, set_config_bits);
}
/*-------------------------------------------------------------------------*/
void SetProtoThresh(FLOAT32 Threshold) {
classify_adapt_proto_thresh.set_value(255 * Threshold);
if (classify_adapt_proto_thresh < 0)
classify_adapt_proto_thresh.set_value(0);
if (classify_adapt_proto_thresh > 255)
classify_adapt_proto_thresh.set_value(255);
}
/*---------------------------------------------------------------------------*/
void SetFeatureThresh(FLOAT32 Threshold) {
classify_adapt_feature_thresh.set_value(255 * Threshold);
if (classify_adapt_feature_thresh < 0)
classify_adapt_feature_thresh.set_value(0);
if (classify_adapt_feature_thresh > 255)
classify_adapt_feature_thresh.set_value(255);
}
/*--------------------------------------------------------------------------*/
void SetBaseLineMatch() {
LocalMatcherMultiplier = 0;
}
/*--------------------------------------------------------------------------*/
void SetCharNormMatch() {
LocalMatcherMultiplier = classify_integer_matcher_multiplier;
}
/**----------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------**/
/*---------------------------------------------------------------------------*/
void
IMClearTables (INT_CLASS ClassTemplate,
int SumOfFeatureEvidence[MAX_NUM_CONFIGS],
uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX]) {
/*
** Parameters:
** SumOfFeatureEvidence Sum of Feature Evidence Table
** NumConfigs Number of Configurations
** ProtoEvidence Prototype Evidence Table
** NumProtos Number of Prototypes
** Globals:
** Operation:
** Clear SumOfFeatureEvidence and ProtoEvidence tables.
** Return:
** Exceptions: none
** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
*/
int NumProtos = ClassTemplate->NumProtos;
int NumConfigs = ClassTemplate->NumConfigs;
memset(SumOfFeatureEvidence, 0,
NumConfigs * sizeof(SumOfFeatureEvidence[0]));
memset(ProtoEvidence, 0,
NumProtos * sizeof(ProtoEvidence[0]));
}
/*---------------------------------------------------------------------------*/
void
IMClearFeatureEvidenceTable (uinT8 FeatureEvidence[MAX_NUM_CONFIGS],
int NumConfigs) {
/*
** Parameters:
** FeatureEvidence Feature Evidence Table
** NumConfigs Number of Configurations
** Globals:
** Operation:
** Clear FeatureEvidence table.
** Return:
** Exceptions: none
** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
*/
memset(FeatureEvidence, 0, NumConfigs * sizeof(*FeatureEvidence));
}
/*---------------------------------------------------------------------------*/
void IMDebugConfiguration(int FeatureNum,
uinT16 ActualProtoNum,
uinT8 Evidence,
BIT_VECTOR ConfigMask,
uinT32 ConfigWord) {
/*
** Parameters:
** Globals:
** Operation:
** Print debugging information for Configuations
** Return:
** Exceptions: none
** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
*/
cprintf ("F = %3d, P = %3d, E = %3d, Configs = ",
FeatureNum, (int) ActualProtoNum, (int) Evidence);
while (ConfigWord) {
if (ConfigWord & 1)
cprintf ("1");
else
cprintf ("0");
ConfigWord >>= 1;
}
cprintf ("\n");
}
/*---------------------------------------------------------------------------*/
void IMDebugConfigurationSum(int FeatureNum,
uinT8 *FeatureEvidence,
inT32 ConfigCount) {
/*
** Parameters:
** Globals:
** Operation:
** Print debugging information for Configuations
** Return:
** Exceptions: none
** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
*/
int ConfigNum;
cprintf ("F=%3d, C=", (int) FeatureNum);
for (ConfigNum = 0; ConfigNum < ConfigCount; ConfigNum++) {
cprintf ("%4d", FeatureEvidence[ConfigNum]);
}
cprintf ("\n");
}
/*---------------------------------------------------------------------------*/
int
IMUpdateTablesForFeature (INT_CLASS ClassTemplate,
BIT_VECTOR ProtoMask,
BIT_VECTOR ConfigMask,
int FeatureNum,
INT_FEATURE Feature,
uinT8 FeatureEvidence[MAX_NUM_CONFIGS],
int SumOfFeatureEvidence[MAX_NUM_CONFIGS],
uinT8
ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX],
int Debug) {
/*
** Parameters:
** ClassTemplate Prototypes & tables for a class
** FeatureNum Current feature number (for DEBUG only)
** Feature Pointer to a feature struct
** FeatureEvidence Feature Evidence Table
** SumOfFeatureEvidence Sum of Feature Evidence Table
** ProtoEvidence Prototype Evidence Table
** Debug Debugger flag: 1=debugger on
** Globals:
** Operation:
** For the given feature: prune protos, compute evidence, update Feature Evidence,
** Proto Evidence, and Sum of Feature Evidence tables.
** Return:
** Exceptions: none
** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
*/
register uinT32 ConfigWord;
register uinT32 ProtoWord;
register uinT32 ProtoNum;
register uinT32 ActualProtoNum;
uinT8 proto_byte;
inT32 proto_word_offset;
inT32 proto_offset;
uinT8 config_byte;
inT32 config_offset;
PROTO_SET ProtoSet;
uinT32 *ProtoPrunerPtr;
INT_PROTO Proto;
int ProtoSetIndex;
uinT8 Evidence;
uinT32 XFeatureAddress;
uinT32 YFeatureAddress;
uinT32 ThetaFeatureAddress;
register uinT8 *UINT8Pointer;
register int ProtoIndex;
uinT8 Temp;
register int *IntPointer;
int ConfigNum;
register inT32 M3;
register inT32 A3;
register uinT32 A4;
IMClearFeatureEvidenceTable(FeatureEvidence, ClassTemplate->NumConfigs);
/* Precompute Feature Address offset for Proto Pruning */
XFeatureAddress = ((Feature->X >> 2) << 1);
YFeatureAddress = (NUM_PP_BUCKETS << 1) + ((Feature->Y >> 2) << 1);
ThetaFeatureAddress = (NUM_PP_BUCKETS << 2) + ((Feature->Theta >> 2) << 1);
for (ProtoSetIndex = 0, ActualProtoNum = 0;
ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
ProtoPrunerPtr = (uinT32 *) ((*ProtoSet).ProtoPruner);
for (ProtoNum = 0; ProtoNum < PROTOS_PER_PROTO_SET;
ProtoNum += (PROTOS_PER_PROTO_SET >> 1), ActualProtoNum +=
(PROTOS_PER_PROTO_SET >> 1), ProtoMask++, ProtoPrunerPtr++) {
/* Prune Protos of current Proto Set */
ProtoWord = *(ProtoPrunerPtr + XFeatureAddress);
ProtoWord &= *(ProtoPrunerPtr + YFeatureAddress);
ProtoWord &= *(ProtoPrunerPtr + ThetaFeatureAddress);
ProtoWord &= *ProtoMask;
if (ProtoWord != 0) {
proto_byte = ProtoWord & 0xff;
ProtoWord >>= 8;
proto_word_offset = 0;
while (ProtoWord != 0 || proto_byte != 0) {
while (proto_byte == 0) {
proto_byte = ProtoWord & 0xff;
ProtoWord >>= 8;
proto_word_offset += 8;
}
proto_offset = offset_table[proto_byte] + proto_word_offset;
proto_byte = next_table[proto_byte];
Proto = &(ProtoSet->Protos[ProtoNum + proto_offset]);
ConfigWord = Proto->Configs[0];
A3 = (((Proto->A * (Feature->X - 128)) << 1)
- (Proto->B * (Feature->Y - 128)) + (Proto->C << 9));
M3 =
(((inT8) (Feature->Theta - Proto->Angle)) *
classify_int_theta_fudge) << 1;
if (A3 < 0)
A3 = ~A3;
if (M3 < 0)
M3 = ~M3;
A3 >>= MultTruncShiftBits;
M3 >>= MultTruncShiftBits;
if (A3 > EvidenceMultMask)
A3 = EvidenceMultMask;
if (M3 > EvidenceMultMask)
M3 = EvidenceMultMask;
A4 = (A3 * A3) + (M3 * M3);
A4 >>= TableTruncShiftBits;
if (A4 > EvidenceTableMask)
Evidence = 0;
else
Evidence = SimilarityEvidenceTable[A4];
if (PrintFeatureMatchesOn (Debug))
IMDebugConfiguration (FeatureNum,
ActualProtoNum + proto_offset,
Evidence, ConfigMask, ConfigWord);
ConfigWord &= *ConfigMask;
UINT8Pointer = FeatureEvidence - 8;
config_byte = 0;
while (ConfigWord != 0 || config_byte != 0) {
while (config_byte == 0) {
config_byte = ConfigWord & 0xff;
ConfigWord >>= 8;
UINT8Pointer += 8;
// config_shifts++;
}
config_offset = offset_table[config_byte];
config_byte = next_table[config_byte];
if (Evidence > UINT8Pointer[config_offset])
UINT8Pointer[config_offset] = Evidence;
}
UINT8Pointer =
&(ProtoEvidence[ActualProtoNum + proto_offset][0]);
for (ProtoIndex =
ClassTemplate->ProtoLengths[ActualProtoNum + proto_offset];
ProtoIndex > 0; ProtoIndex--, UINT8Pointer++) {
if (Evidence > *UINT8Pointer) {
Temp = *UINT8Pointer;
*UINT8Pointer = Evidence;
Evidence = Temp;
}
else if (Evidence == 0)
break;
}
}
}
}
}
if (PrintFeatureMatchesOn (Debug))
IMDebugConfigurationSum (FeatureNum, FeatureEvidence,
ClassTemplate->NumConfigs);
IntPointer = SumOfFeatureEvidence;
UINT8Pointer = FeatureEvidence;
int SumOverConfigs = 0;
for (ConfigNum = ClassTemplate->NumConfigs; ConfigNum > 0; ConfigNum--) {
int evidence = *UINT8Pointer++;
SumOverConfigs += evidence;
*IntPointer++ += evidence;
}
return SumOverConfigs;
}
/*---------------------------------------------------------------------------*/
#ifndef GRAPHICS_DISABLED
void
IMDebugFeatureProtoError (INT_CLASS ClassTemplate,
BIT_VECTOR ProtoMask,
BIT_VECTOR ConfigMask,
int SumOfFeatureEvidence[MAX_NUM_CONFIGS],
uinT8
ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX],
inT16 NumFeatures, int Debug) {
/*
** Parameters:
** Globals:
** Operation:
** Print debugging information for Configuations
** Return:
** Exceptions: none
** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
*/
uinT8 *UINT8Pointer;
int *IntPointer;
FLOAT32 ProtoConfigs[MAX_NUM_CONFIGS];
int ConfigNum;
uinT32 ConfigWord;
int ProtoSetIndex;
uinT16 ProtoNum;
uinT8 ProtoWordNum;
PROTO_SET ProtoSet;
int ProtoIndex;
int NumProtos;
uinT16 ActualProtoNum;
int Temp;
int NumConfigs;
NumProtos = ClassTemplate->NumProtos;
NumConfigs = ClassTemplate->NumConfigs;
if (PrintMatchSummaryOn (Debug)) {
cprintf ("Configuration Mask:\n");
for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++)
cprintf ("%1d", (((*ConfigMask) >> ConfigNum) & 1));
cprintf ("\n");
cprintf ("Feature Error for Configurations:\n");
for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++)
cprintf (" %5.1f",
100.0 * (1.0 -
(FLOAT32) SumOfFeatureEvidence[ConfigNum] /
NumFeatures / 256.0));
cprintf ("\n\n\n");
}
if (PrintMatchSummaryOn (Debug)) {
cprintf ("Proto Mask:\n");
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
ProtoSetIndex++) {
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
for (ProtoWordNum = 0; ProtoWordNum < 2;
ProtoWordNum++, ProtoMask++) {
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
for (ProtoNum = 0;
((ProtoNum < (PROTOS_PER_PROTO_SET >> 1))
&& (ActualProtoNum < NumProtos));
ProtoNum++, ActualProtoNum++)
cprintf ("%1d", (((*ProtoMask) >> ProtoNum) & 1));
cprintf ("\n");
}
}
cprintf ("\n");
}
for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++)
ProtoConfigs[ConfigNum] = 0;
if (PrintProtoMatchesOn (Debug)) {
cprintf ("Proto Evidence:\n");
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
ProtoSetIndex++) {
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
for (ProtoNum = 0;
((ProtoNum < PROTOS_PER_PROTO_SET)
&& (ActualProtoNum < NumProtos));
ProtoNum++, ActualProtoNum++) {
cprintf ("P %3d =", ActualProtoNum);
Temp = 0;
UINT8Pointer = &(ProtoEvidence[ActualProtoNum][0]);
for (ProtoIndex = 0;
ProtoIndex < ClassTemplate->ProtoLengths[ActualProtoNum];
ProtoIndex++, UINT8Pointer++) {
cprintf (" %d", *UINT8Pointer);
Temp += *UINT8Pointer;
}
cprintf (" = %6.4f%%\n", Temp /
256.0 / ClassTemplate->ProtoLengths[ActualProtoNum]);
ConfigWord = (ProtoSet->Protos[ProtoNum]).Configs[0];
IntPointer = SumOfFeatureEvidence;
ConfigNum = 0;
while (ConfigWord) {
cprintf ("%5d", ConfigWord & 1 ? Temp : 0);
if (ConfigWord & 1)
ProtoConfigs[ConfigNum] += Temp;
IntPointer++;
ConfigNum++;
ConfigWord >>= 1;
}
cprintf ("\n");
}
}
}
if (PrintMatchSummaryOn (Debug)) {
cprintf ("Proto Error for Configurations:\n");
for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++)
cprintf (" %5.1f",
100.0 * (1.0 -
ProtoConfigs[ConfigNum] /
ClassTemplate->ConfigLengths[ConfigNum] / 256.0));
cprintf ("\n\n");
}
if (PrintProtoMatchesOn (Debug)) {
cprintf ("Proto Sum for Configurations:\n");
for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++)
cprintf (" %4.1f", ProtoConfigs[ConfigNum] / 256.0);
cprintf ("\n\n");
cprintf ("Proto Length for Configurations:\n");
for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++)
cprintf (" %4.1f",
(float) ClassTemplate->ConfigLengths[ConfigNum]);
cprintf ("\n\n");
}
}
/*---------------------------------------------------------------------------*/
void
IMDisplayProtoDebugInfo (INT_CLASS ClassTemplate,
BIT_VECTOR ProtoMask,
BIT_VECTOR ConfigMask,
uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX],
int Debug) {
register uinT8 *UINT8Pointer;
register uinT32 ConfigWord;
register uinT16 ProtoNum;
register uinT16 ActualProtoNum;
PROTO_SET ProtoSet;
int ProtoSetIndex;
int ProtoIndex;
int NumProtos;
register int Temp;
InitIntMatchWindowIfReqd();
if (matcher_debug_separate_windows) {
InitFeatureDisplayWindowIfReqd();
InitProtoDisplayWindowIfReqd();
}
NumProtos = ClassTemplate->NumProtos;
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
ProtoSetIndex++) {
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
for (ProtoNum = 0;
((ProtoNum < PROTOS_PER_PROTO_SET)
&& (ActualProtoNum < NumProtos)); ProtoNum++, ActualProtoNum++) {
/* Compute Average for Actual Proto */
Temp = 0;
UINT8Pointer = &(ProtoEvidence[ActualProtoNum][0]);
for (ProtoIndex = ClassTemplate->ProtoLengths[ActualProtoNum];
ProtoIndex > 0; ProtoIndex--, UINT8Pointer++)
Temp += *UINT8Pointer;
Temp /= ClassTemplate->ProtoLengths[ActualProtoNum];
ConfigWord = (ProtoSet->Protos[ProtoNum]).Configs[0];
ConfigWord &= *ConfigMask;
if (ConfigWord) {
/* Update display for current proto */
if (ClipMatchEvidenceOn (Debug)) {
if (Temp < classify_adapt_proto_thresh)
DisplayIntProto (ClassTemplate, ActualProtoNum,
(Temp / 255.0));
else
DisplayIntProto (ClassTemplate, ActualProtoNum,
(Temp / 255.0));
}
else {
DisplayIntProto (ClassTemplate, ActualProtoNum,
(Temp / 255.0));
}
}
}
}
}
/*---------------------------------------------------------------------------*/
void IMDisplayFeatureDebugInfo(INT_CLASS ClassTemplate,
BIT_VECTOR ProtoMask,
BIT_VECTOR ConfigMask,
inT16 NumFeatures,
INT_FEATURE_ARRAY Features,
int Debug) {
static uinT8 FeatureEvidence[MAX_NUM_CONFIGS];
static int SumOfFeatureEvidence[MAX_NUM_CONFIGS];
static uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX];
int Feature;
register uinT8 *UINT8Pointer;
register int ConfigNum;
int NumConfigs;
register int Temp;
IMClearTables(ClassTemplate, SumOfFeatureEvidence, ProtoEvidence);
InitIntMatchWindowIfReqd();
if (matcher_debug_separate_windows) {
InitFeatureDisplayWindowIfReqd();
InitProtoDisplayWindowIfReqd();
}
NumConfigs = ClassTemplate->NumConfigs;
for (Feature = 0; Feature < NumFeatures; Feature++) {
IMUpdateTablesForFeature (ClassTemplate, ProtoMask, ConfigMask, Feature,
&(Features[Feature]), FeatureEvidence,
SumOfFeatureEvidence, ProtoEvidence, 0);
/* Find Best Evidence for Current Feature */
Temp = 0;
UINT8Pointer = FeatureEvidence;
for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++, UINT8Pointer++)
if (*UINT8Pointer > Temp)
Temp = *UINT8Pointer;
/* Update display for current feature */
if (ClipMatchEvidenceOn (Debug)) {
if (Temp < classify_adapt_feature_thresh)
DisplayIntFeature (&(Features[Feature]), 0.0);
else
DisplayIntFeature (&(Features[Feature]), 1.0);
}
else {
DisplayIntFeature (&(Features[Feature]), (Temp / 255.0));
}
}
}
#endif
/*---------------------------------------------------------------------------*/
void
IMUpdateSumOfProtoEvidences (INT_CLASS ClassTemplate,
BIT_VECTOR ConfigMask,
int SumOfFeatureEvidence[MAX_NUM_CONFIGS],
uinT8
ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX],
inT16 NumFeatures) {
/*
** Parameters:
** Globals:
** Operation:
** Add sum of Proto Evidences into Sum Of Feature Evidence Array
** Return:
** Exceptions: none
** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
*/
register uinT8 *UINT8Pointer;
register int *IntPointer;
register uinT32 ConfigWord;
int ProtoSetIndex;
register uinT16 ProtoNum;
PROTO_SET ProtoSet;
register int ProtoIndex;
int NumProtos;
uinT16 ActualProtoNum;
int Temp;
NumProtos = ClassTemplate->NumProtos;
for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
ProtoSetIndex++) {
ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
for (ProtoNum = 0;
((ProtoNum < PROTOS_PER_PROTO_SET)
&& (ActualProtoNum < NumProtos)); ProtoNum++, ActualProtoNum++) {
Temp = 0;
UINT8Pointer = &(ProtoEvidence[ActualProtoNum][0]);
for (ProtoIndex = ClassTemplate->ProtoLengths[ActualProtoNum];
ProtoIndex > 0; ProtoIndex--, UINT8Pointer++)
Temp += *UINT8Pointer;
ConfigWord = (ProtoSet->Protos[ProtoNum]).Configs[0];
ConfigWord &= *ConfigMask;
IntPointer = SumOfFeatureEvidence;
while (ConfigWord) {
if (ConfigWord & 1)
*IntPointer += Temp;
IntPointer++;
ConfigWord >>= 1;
}
}
}
}
/*---------------------------------------------------------------------------*/
void
IMNormalizeSumOfEvidences (INT_CLASS ClassTemplate,
int SumOfFeatureEvidence[MAX_NUM_CONFIGS],
inT16 NumFeatures, inT32 used_features) {
/*
** Parameters:
** Globals:
** Operation:
** Normalize Sum of Proto and Feature Evidence by dividing by
** the sum of the Feature Lengths and the Proto Lengths for each
** configuration.
** Return:
** Exceptions: none
** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
*/
register int *IntPointer;
register int ConfigNum;
int NumConfigs;
NumConfigs = ClassTemplate->NumConfigs;
IntPointer = SumOfFeatureEvidence;
for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++, IntPointer++)
*IntPointer = (*IntPointer << 8) /
(NumFeatures + ClassTemplate->ConfigLengths[ConfigNum]);
}
/*---------------------------------------------------------------------------*/
int
IMFindBestMatch (INT_CLASS ClassTemplate,
int SumOfFeatureEvidence[MAX_NUM_CONFIGS],
uinT16 BlobLength,
uinT8 NormalizationFactor, INT_RESULT Result) {
/*
** Parameters:
** Globals:
** Operation:
** Find the best match for the current class and update the Result
** with the configuration and match rating.
** Return:
** The best normalized sum of evidences
** Exceptions: none
** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
*/
register int *IntPointer;
register int ConfigNum;
register int NumConfigs;
register int BestMatch;
register int Best2Match;
NumConfigs = ClassTemplate->NumConfigs;
/* Find best match */
BestMatch = 0;
Best2Match = 0;
IntPointer = SumOfFeatureEvidence;
for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++, IntPointer++) {
if (tord_display_ratings > 1)
cprintf ("Config %d, rating=%d\n", ConfigNum, *IntPointer);
if (*IntPointer > BestMatch) {
if (BestMatch > 0) {
Result->Config2 = Result->Config;
Best2Match = BestMatch;
}
else
Result->Config2 = ConfigNum;
Result->Config = ConfigNum;
BestMatch = *IntPointer;
}
else if (*IntPointer > Best2Match) {
Result->Config2 = ConfigNum;
Best2Match = *IntPointer;
}
}
/* Compute Certainty Rating */
(*Result).Rating = ((65536.0 - BestMatch) / 65536.0 * BlobLength +
LocalMatcherMultiplier * NormalizationFactor / 256.0) /
(BlobLength + LocalMatcherMultiplier);
return BestMatch;
}
/*---------------------------------------------------------------------------*/
#ifndef GRAPHICS_DISABLED
void IMDebugBestMatch(int BestMatch,
INT_RESULT Result,
uinT16 BlobLength,
uinT8 NormalizationFactor) {
/*
** Parameters:
** Globals:
** Operation:
** Find the best match for the current class and update the Result
** Return:
** Exceptions: none
** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created.
*/
cprintf ("Rating = %5.1f%% Best Config = %3d\n",
100.0 * ((*Result).Rating), (int) ((*Result).Config));
cprintf
("Matcher Error = %5.1f%% Blob Length = %3d Weight = %4.1f%%\n",
100.0 * (65536.0 - BestMatch) / 65536.0, (int) BlobLength,
100.0 * BlobLength / (BlobLength + LocalMatcherMultiplier));
cprintf
("Char Norm Error = %5.1f%% Norm Strength = %3d Weight = %4.1f%%\n",
100.0 * NormalizationFactor / 256.0, LocalMatcherMultiplier,
100.0 * LocalMatcherMultiplier / (BlobLength + LocalMatcherMultiplier));
}
#endif
/*---------------------------------------------------------------------------*/
void
HeapSort (int n, register int ra[], register int rb[]) {
/*
** Parameters:
** n Number of elements to sort
** ra Key array [1..n]
** rb Index array [1..n]
** Globals:
** Operation:
** Sort Key array in ascending order using heap sort
** algorithm. Also sort Index array that is tied to
** the key array.
** Return:
** Exceptions: none
** History: Tue Feb 19 10:24:24 MST 1991, RWM, Created.
*/
register int i, rra, rrb;
int l, j, ir;
l = (n >> 1) + 1;
ir = n;
for (;;) {
if (l > 1) {
rra = ra[--l];
rrb = rb[l];
}
else {
rra = ra[ir];
rrb = rb[ir];
ra[ir] = ra[1];
rb[ir] = rb[1];
if (--ir == 1) {
ra[1] = rra;
rb[1] = rrb;
return;
}
}
i = l;
j = l << 1;
while (j <= ir) {
if (j < ir && ra[j] < ra[j + 1])
++j;
if (rra < ra[j]) {
ra[i] = ra[j];
rb[i] = rb[j];
j += (i = j);
}
else
j = ir + 1;
}
ra[i] = rra;
rb[i] = rrb;
}
}