2009-07-11 10:44:07 +08:00
|
|
|
/******************************************************************************
|
2018-07-02 18:24:35 +08:00
|
|
|
** Filename: mftraining.c
|
|
|
|
** Purpose: Separates training pages into files for each character.
|
|
|
|
** Strips from files only the features and there parameters of
|
|
|
|
** the feature type mf.
|
|
|
|
** Author: Dan Johnson
|
|
|
|
** Revisment: Christy Russon
|
|
|
|
**
|
2010-11-24 02:34:14 +08:00
|
|
|
** (c) Copyright Hewlett-Packard Company, 1988.
|
2009-07-11 10:44:07 +08:00
|
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
** you may not use this file except in compliance with the License.
|
|
|
|
** You may obtain a copy of the License at
|
|
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
** See the License for the specific language governing permissions and
|
|
|
|
** limitations under the License.
|
|
|
|
******************************************************************************/
|
2014-09-13 04:41:19 +08:00
|
|
|
/*----------------------------------------------------------------------------
|
2010-11-24 02:34:14 +08:00
|
|
|
Include Files and Type Defines
|
2014-09-13 04:41:19 +08:00
|
|
|
----------------------------------------------------------------------------*/
|
2014-01-12 07:08:54 +08:00
|
|
|
#ifdef HAVE_CONFIG_H
|
|
|
|
#include "config_auto.h"
|
|
|
|
#endif
|
|
|
|
|
2018-05-20 05:52:04 +08:00
|
|
|
#include <cstring>
|
|
|
|
#include <cstdio>
|
2009-07-11 10:44:07 +08:00
|
|
|
#define _USE_MATH_DEFINES
|
2018-05-20 05:52:04 +08:00
|
|
|
#include <cmath>
|
2009-07-11 10:44:07 +08:00
|
|
|
|
2012-02-02 11:02:16 +08:00
|
|
|
#include "classify.h"
|
|
|
|
#include "cluster.h"
|
|
|
|
#include "clusttool.h"
|
|
|
|
#include "commontraining.h"
|
|
|
|
#include "emalloc.h"
|
|
|
|
#include "featdefs.h"
|
|
|
|
#include "fontinfo.h"
|
|
|
|
#include "genericvector.h"
|
|
|
|
#include "indexmapbidi.h"
|
|
|
|
#include "intproto.h"
|
|
|
|
#include "mastertrainer.h"
|
|
|
|
#include "mergenf.h"
|
|
|
|
#include "mf.h"
|
|
|
|
#include "ocrfeatures.h"
|
|
|
|
#include "oldlist.h"
|
|
|
|
#include "protos.h"
|
|
|
|
#include "shapetable.h"
|
|
|
|
#include "tessopt.h"
|
|
|
|
#include "tprintf.h"
|
|
|
|
#include "unicity_table.h"
|
|
|
|
|
|
|
|
using tesseract::IndexMapBiDi;
|
|
|
|
using tesseract::MasterTrainer;
|
|
|
|
using tesseract::Shape;
|
|
|
|
using tesseract::ShapeTable;
|
|
|
|
|
2009-07-11 10:44:07 +08:00
|
|
|
#define PROGRAM_FEATURE_TYPE "mf"
|
|
|
|
|
2012-02-02 11:02:16 +08:00
|
|
|
// Max length of a fake shape label.
|
|
|
|
const int kMaxShapeLabelLength = 10;
|
|
|
|
|
|
|
|
DECLARE_STRING_PARAM_FLAG(test_ch);
|
|
|
|
|
2009-07-11 10:44:07 +08:00
|
|
|
/*----------------------------------------------------------------------------
|
2010-11-24 02:34:14 +08:00
|
|
|
Public Code
|
2009-07-11 10:44:07 +08:00
|
|
|
-----------------------------------------------------------------------------*/
|
2012-03-02 06:43:51 +08:00
|
|
|
#ifndef GRAPHICS_DISABLED
|
2012-02-02 11:02:16 +08:00
|
|
|
static void DisplayProtoList(const char* ch, LIST protolist) {
|
2009-07-11 10:44:07 +08:00
|
|
|
void* window = c_create_window("Char samples", 50, 200,
|
|
|
|
520, 520, -130.0, 130.0, -130.0, 130.0);
|
|
|
|
LIST proto = protolist;
|
|
|
|
iterate(proto) {
|
|
|
|
PROTOTYPE* prototype = reinterpret_cast<PROTOTYPE *>(first_node(proto));
|
|
|
|
if (prototype->Significant)
|
|
|
|
c_line_color_index(window, Green);
|
|
|
|
else if (prototype->NumSamples == 0)
|
|
|
|
c_line_color_index(window, Blue);
|
|
|
|
else if (prototype->Merged)
|
|
|
|
c_line_color_index(window, Magenta);
|
|
|
|
else
|
|
|
|
c_line_color_index(window, Red);
|
|
|
|
float x = CenterX(prototype->Mean);
|
|
|
|
float y = CenterY(prototype->Mean);
|
|
|
|
double angle = OrientationOf(prototype->Mean) * 2 * M_PI;
|
|
|
|
float dx = static_cast<float>(LengthOf(prototype->Mean) * cos(angle) / 2);
|
|
|
|
float dy = static_cast<float>(LengthOf(prototype->Mean) * sin(angle) / 2);
|
|
|
|
c_move(window, (x - dx) * 256, (y - dy) * 256);
|
|
|
|
c_draw(window, (x + dx) * 256, (y + dy) * 256);
|
|
|
|
if (prototype->Significant)
|
|
|
|
tprintf("Green proto at (%g,%g)+(%g,%g) %d samples\n",
|
|
|
|
x, y, dx, dy, prototype->NumSamples);
|
|
|
|
else if (prototype->NumSamples > 0 && !prototype->Merged)
|
|
|
|
tprintf("Red proto at (%g,%g)+(%g,%g) %d samples\n",
|
|
|
|
x, y, dx, dy, prototype->NumSamples);
|
|
|
|
}
|
|
|
|
c_make_current(window);
|
|
|
|
}
|
2012-03-02 06:43:51 +08:00
|
|
|
#endif // GRAPHICS_DISABLED
|
2009-07-11 10:44:07 +08:00
|
|
|
|
2012-02-02 11:02:16 +08:00
|
|
|
// Helper to run clustering on a single config.
|
|
|
|
// Mostly copied from the old mftraining, but with renamed variables.
|
|
|
|
static LIST ClusterOneConfig(int shape_id, const char* class_label,
|
|
|
|
LIST mf_classes,
|
|
|
|
const ShapeTable& shape_table,
|
|
|
|
MasterTrainer* trainer) {
|
|
|
|
int num_samples;
|
|
|
|
CLUSTERER *clusterer = trainer->SetupForClustering(shape_table,
|
|
|
|
feature_defs,
|
|
|
|
shape_id,
|
|
|
|
&num_samples);
|
|
|
|
Config.MagicSamples = num_samples;
|
|
|
|
LIST proto_list = ClusterSamples(clusterer, &Config);
|
|
|
|
CleanUpUnusedData(proto_list);
|
|
|
|
|
|
|
|
// Merge protos where reasonable to make more of them significant by
|
|
|
|
// representing almost all samples of the class/font.
|
|
|
|
MergeInsignificantProtos(proto_list, class_label, clusterer, &Config);
|
2012-03-02 06:43:51 +08:00
|
|
|
#ifndef GRAPHICS_DISABLED
|
2012-02-02 11:02:16 +08:00
|
|
|
if (strcmp(FLAGS_test_ch.c_str(), class_label) == 0)
|
|
|
|
DisplayProtoList(FLAGS_test_ch.c_str(), proto_list);
|
2012-03-02 06:43:51 +08:00
|
|
|
#endif // GRAPHICS_DISABLED
|
2012-02-02 11:02:16 +08:00
|
|
|
// Delete the protos that will not be used in the inttemp output file.
|
|
|
|
proto_list = RemoveInsignificantProtos(proto_list, true,
|
|
|
|
false,
|
|
|
|
clusterer->SampleSize);
|
|
|
|
FreeClusterer(clusterer);
|
|
|
|
MERGE_CLASS merge_class = FindClass(mf_classes, class_label);
|
2016-12-13 15:08:01 +08:00
|
|
|
if (merge_class == nullptr) {
|
2012-02-02 11:02:16 +08:00
|
|
|
merge_class = NewLabeledClass(class_label);
|
|
|
|
mf_classes = push(mf_classes, merge_class);
|
|
|
|
}
|
|
|
|
int config_id = AddConfigToClass(merge_class->Class);
|
|
|
|
merge_class->Class->font_set.push_back(shape_id);
|
|
|
|
LIST proto_it = proto_list;
|
|
|
|
iterate(proto_it) {
|
|
|
|
PROTOTYPE* prototype = reinterpret_cast<PROTOTYPE*>(first_node(proto_it));
|
|
|
|
// See if proto can be approximated by existing proto.
|
|
|
|
int p_id = FindClosestExistingProto(merge_class->Class,
|
|
|
|
merge_class->NumMerged, prototype);
|
|
|
|
if (p_id == NO_PROTO) {
|
|
|
|
// Need to make a new proto, as it doesn't match anything.
|
|
|
|
p_id = AddProtoToClass(merge_class->Class);
|
|
|
|
MakeNewFromOld(ProtoIn(merge_class->Class, p_id), prototype);
|
|
|
|
merge_class->NumMerged[p_id] = 1;
|
|
|
|
} else {
|
|
|
|
PROTO_STRUCT dummy_proto;
|
|
|
|
MakeNewFromOld(&dummy_proto, prototype);
|
|
|
|
// Merge with the similar proto.
|
|
|
|
ComputeMergedProto(ProtoIn(merge_class->Class, p_id), &dummy_proto,
|
2018-07-02 18:24:35 +08:00
|
|
|
static_cast<float>(merge_class->NumMerged[p_id]),
|
2012-02-02 11:02:16 +08:00
|
|
|
1.0,
|
|
|
|
ProtoIn(merge_class->Class, p_id));
|
|
|
|
merge_class->NumMerged[p_id]++;
|
|
|
|
}
|
|
|
|
AddProtoToConfig(p_id, merge_class->Class->Configurations[config_id]);
|
|
|
|
}
|
|
|
|
FreeProtoList(&proto_list);
|
|
|
|
return mf_classes;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Helper to setup the config map.
|
|
|
|
// Setup an index mapping from the shapes in the shape table to the classes
|
|
|
|
// that will be trained. In keeping with the original design, each shape
|
|
|
|
// with the same list of unichars becomes a different class and the configs
|
|
|
|
// represent the different combinations of fonts.
|
|
|
|
static void SetupConfigMap(ShapeTable* shape_table, IndexMapBiDi* config_map) {
|
|
|
|
int num_configs = shape_table->NumShapes();
|
|
|
|
config_map->Init(num_configs, true);
|
|
|
|
config_map->Setup();
|
|
|
|
for (int c1 = 0; c1 < num_configs; ++c1) {
|
|
|
|
// Only process ids that are not already merged.
|
|
|
|
if (config_map->SparseToCompact(c1) == c1) {
|
|
|
|
Shape* shape1 = shape_table->MutableShape(c1);
|
|
|
|
// Find all the subsequent shapes that are equal.
|
|
|
|
for (int c2 = c1 + 1; c2 < num_configs; ++c2) {
|
|
|
|
if (shape_table->MutableShape(c2)->IsEqualUnichars(shape1)) {
|
|
|
|
config_map->Merge(c1, c2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
config_map->CompleteMerges();
|
2009-07-11 10:44:07 +08:00
|
|
|
}
|
|
|
|
|
2014-09-13 04:41:19 +08:00
|
|
|
/**
|
|
|
|
* This program reads in a text file consisting of feature
|
|
|
|
* samples from a training page in the following format:
|
|
|
|
* @verbatim
|
|
|
|
FontName UTF8-char-str xmin ymin xmax ymax page-number
|
|
|
|
NumberOfFeatureTypes(N)
|
|
|
|
FeatureTypeName1 NumberOfFeatures(M)
|
|
|
|
Feature1
|
|
|
|
...
|
|
|
|
FeatureM
|
|
|
|
FeatureTypeName2 NumberOfFeatures(M)
|
|
|
|
Feature1
|
|
|
|
...
|
|
|
|
FeatureM
|
|
|
|
...
|
|
|
|
FeatureTypeNameN NumberOfFeatures(M)
|
|
|
|
Feature1
|
|
|
|
...
|
|
|
|
FeatureM
|
|
|
|
FontName CharName ...
|
|
|
|
@endverbatim
|
|
|
|
* The result of this program is a binary inttemp file used by
|
|
|
|
* the OCR engine.
|
|
|
|
* @param argc number of command line arguments
|
|
|
|
* @param argv array of command line arguments
|
2018-07-03 20:46:41 +08:00
|
|
|
* @return 0 if no error occurred
|
2014-09-13 04:41:19 +08:00
|
|
|
*/
|
2009-07-11 10:44:07 +08:00
|
|
|
int main (int argc, char **argv) {
|
2018-04-15 16:33:46 +08:00
|
|
|
tesseract::CheckSharedLibraryVersion();
|
|
|
|
|
2012-02-02 11:02:16 +08:00
|
|
|
ParseArguments(&argc, &argv);
|
|
|
|
|
2016-12-13 15:08:01 +08:00
|
|
|
ShapeTable* shape_table = nullptr;
|
2012-02-02 11:02:16 +08:00
|
|
|
STRING file_prefix;
|
|
|
|
// Load the training data.
|
|
|
|
MasterTrainer* trainer = tesseract::LoadTrainingData(argc, argv,
|
|
|
|
false,
|
|
|
|
&shape_table,
|
|
|
|
&file_prefix);
|
2017-01-26 08:20:19 +08:00
|
|
|
if (trainer == nullptr) return 1; // Failed.
|
2012-02-02 11:02:16 +08:00
|
|
|
|
|
|
|
// Setup an index mapping from the shapes in the shape table to the classes
|
|
|
|
// that will be trained. In keeping with the original design, each shape
|
|
|
|
// with the same list of unichars becomes a different class and the configs
|
|
|
|
// represent the different combinations of fonts.
|
|
|
|
IndexMapBiDi config_map;
|
|
|
|
SetupConfigMap(shape_table, &config_map);
|
|
|
|
|
|
|
|
WriteShapeTable(file_prefix, *shape_table);
|
|
|
|
// If the shape_table is flat, then either we didn't run shape clustering, or
|
|
|
|
// it did nothing, so we just output the trainer's unicharset.
|
|
|
|
// Otherwise shape_set will hold a fake unicharset with an entry for each
|
|
|
|
// shape in the shape table, and we will output that instead.
|
|
|
|
UNICHARSET shape_set;
|
|
|
|
const UNICHARSET* unicharset = &trainer->unicharset();
|
|
|
|
// If we ran shapeclustering (and it worked) then at least one shape will
|
|
|
|
// have multiple unichars, so we have to build a fake unicharset.
|
|
|
|
if (shape_table->AnyMultipleUnichars()) {
|
|
|
|
unicharset = &shape_set;
|
|
|
|
// Now build a fake unicharset for the compact shape space to keep the
|
|
|
|
// output modules happy that we are doing things correctly.
|
|
|
|
int num_shapes = config_map.CompactSize();
|
|
|
|
for (int s = 0; s < num_shapes; ++s) {
|
|
|
|
char shape_label[kMaxShapeLabelLength + 1];
|
|
|
|
snprintf(shape_label, kMaxShapeLabelLength, "sh%04d", s);
|
|
|
|
shape_set.unichar_insert(shape_label);
|
2009-07-11 10:44:07 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-02-02 11:02:16 +08:00
|
|
|
// Now train each config separately.
|
|
|
|
int num_configs = shape_table->NumShapes();
|
|
|
|
LIST mf_classes = NIL_LIST;
|
|
|
|
for (int s = 0; s < num_configs; ++s) {
|
|
|
|
int unichar_id, font_id;
|
|
|
|
if (unicharset == &shape_set) {
|
|
|
|
// Using fake unichar_ids from the config_map/shape_set.
|
|
|
|
unichar_id = config_map.SparseToCompact(s);
|
2009-07-11 10:44:07 +08:00
|
|
|
} else {
|
2012-02-02 11:02:16 +08:00
|
|
|
// Get the real unichar_id from the shape table/unicharset.
|
|
|
|
shape_table->GetFirstUnicharAndFont(s, &unichar_id, &font_id);
|
2009-07-11 10:44:07 +08:00
|
|
|
}
|
2012-02-02 11:02:16 +08:00
|
|
|
const char* class_label = unicharset->id_to_unichar(unichar_id);
|
|
|
|
mf_classes = ClusterOneConfig(s, class_label, mf_classes, *shape_table,
|
|
|
|
trainer);
|
2009-07-11 10:44:07 +08:00
|
|
|
}
|
2012-02-02 11:02:16 +08:00
|
|
|
STRING inttemp_file = file_prefix;
|
|
|
|
inttemp_file += "inttemp";
|
|
|
|
STRING pffmtable_file = file_prefix;
|
|
|
|
pffmtable_file += "pffmtable";
|
|
|
|
CLASS_STRUCT* float_classes = SetUpForFloat2Int(*unicharset, mf_classes);
|
|
|
|
// Now write the inttemp and pffmtable.
|
|
|
|
trainer->WriteInttempAndPFFMTable(trainer->unicharset(), *unicharset,
|
|
|
|
*shape_table, float_classes,
|
|
|
|
inttemp_file.string(),
|
|
|
|
pffmtable_file.string());
|
2016-11-08 07:38:07 +08:00
|
|
|
for (int c = 0; c < unicharset->size(); ++c) {
|
|
|
|
FreeClassFields(&float_classes[c]);
|
|
|
|
}
|
2012-02-02 11:02:16 +08:00
|
|
|
delete [] float_classes;
|
|
|
|
FreeLabeledClassList(mf_classes);
|
|
|
|
delete trainer;
|
|
|
|
delete shape_table;
|
|
|
|
printf("Done!\n");
|
|
|
|
if (!FLAGS_test_ch.empty()) {
|
2010-11-24 02:34:14 +08:00
|
|
|
// If we are displaying debug window(s), wait for the user to look at them.
|
2012-02-02 11:02:16 +08:00
|
|
|
printf("Hit return to exit...\n");
|
2010-11-24 02:34:14 +08:00
|
|
|
while (getchar() != '\n');
|
|
|
|
}
|
2009-07-11 10:44:07 +08:00
|
|
|
return 0;
|
2010-11-24 02:34:14 +08:00
|
|
|
} /* main */
|