tesseract/lstm/input.cpp

155 lines
5.5 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// File: input.cpp
// Description: Input layer class for neural network implementations.
// Author: Ray Smith
// Created: Thu Mar 13 09:10:34 PDT 2014
//
// (C) Copyright 2014, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#include "input.h"
#include "allheaders.h"
#include "imagedata.h"
#include "pageres.h"
#include "scrollview.h"
namespace tesseract {
Input::Input(const STRING& name, int ni, int no)
: Network(NT_INPUT, name, ni, no), cached_x_scale_(1) {}
Input::Input(const STRING& name, const StaticShape& shape)
: Network(NT_INPUT, name, shape.height(), shape.depth()),
shape_(shape),
cached_x_scale_(1) {
if (shape.height() == 1) ni_ = shape.depth();
}
Input::~Input() {
}
// Writes to the given file. Returns false in case of error.
bool Input::Serialize(TFile* fp) const {
if (!Network::Serialize(fp)) return false;
if (fp->FWrite(&shape_, sizeof(shape_), 1) != 1) return false;
return true;
}
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool Input::DeSerialize(bool swap, TFile* fp) {
if (fp->FRead(&shape_, sizeof(shape_), 1) != 1) return false;
// TODO(rays) swaps!
return true;
}
// Returns an integer reduction factor that the network applies to the
// time sequence. Assumes that any 2-d is already eliminated. Used for
// scaling bounding boxes of truth data.
int Input::XScaleFactor() const {
return 1;
}
// Provides the (minimum) x scale factor to the network (of interest only to
// input units) so they can determine how to scale bounding boxes.
void Input::CacheXScaleFactor(int factor) {
cached_x_scale_ = factor;
}
// Runs forward propagation of activations on the input line.
// See Network for a detailed discussion of the arguments.
void Input::Forward(bool debug, const NetworkIO& input,
const TransposedArray* input_transpose,
NetworkScratch* scratch, NetworkIO* output) {
*output = input;
}
// Runs backward propagation of errors on the deltas line.
// See NetworkCpp for a detailed discussion of the arguments.
bool Input::Backward(bool debug, const NetworkIO& fwd_deltas,
NetworkScratch* scratch,
NetworkIO* back_deltas) {
tprintf("Input::Backward should not be called!!\n");
return false;
}
// Creates and returns a Pix of appropriate size for the network from the
// image_data. If non-null, *image_scale returns the image scale factor used.
// Returns nullptr on error.
/* static */
Pix* Input::PrepareLSTMInputs(const ImageData& image_data,
const Network* network, int min_width,
TRand* randomizer, float* image_scale) {
// Note that NumInputs() is defined as input image height.
int target_height = network->NumInputs();
int width, height;
Pix* pix =
image_data.PreScale(target_height, image_scale, &width, &height, nullptr);
if (pix == nullptr) {
tprintf("Bad pix from ImageData!\n");
return nullptr;
}
if (width <= min_width) {
tprintf("Image too small to scale!! (%dx%d vs min width of %d)\n", width,
height, min_width);
pixDestroy(&pix);
return nullptr;
}
return pix;
}
// Converts the given pix to a NetworkIO of height and depth appropriate to the
// given StaticShape:
// If depth == 3, convert to 24 bit color, otherwise normalized grey.
// Scale to target height, if the shape's height is > 1, or its depth if the
// height == 1. If height == 0 then no scaling.
// NOTE: It isn't safe for multiple threads to call this on the same pix.
/* static */
void Input::PreparePixInput(const StaticShape& shape, const Pix* pix,
TRand* randomizer, NetworkIO* input) {
bool color = shape.depth() == 3;
Pix* var_pix = const_cast<Pix*>(pix);
int depth = pixGetDepth(var_pix);
Pix* normed_pix = nullptr;
// On input to BaseAPI, an image is forced to be 1, 8 or 24 bit, without
// colormap, so we just have to deal with depth conversion here.
if (color) {
// Force RGB.
if (depth == 32)
normed_pix = pixClone(var_pix);
else
normed_pix = pixConvertTo32(var_pix);
} else {
// Convert non-8-bit images to 8 bit.
if (depth == 8)
normed_pix = pixClone(var_pix);
else
normed_pix = pixConvertTo8(var_pix, false);
}
int width = pixGetWidth(normed_pix);
int height = pixGetHeight(normed_pix);
int target_height = shape.height();
if (target_height == 1) target_height = shape.depth();
if (target_height == 0) target_height = height;
float im_factor = static_cast<float>(target_height) / height;
if (im_factor != 1.0f) {
// Get the scaled image.
Pix* scaled_pix = pixScale(normed_pix, im_factor, im_factor);
pixDestroy(&normed_pix);
normed_pix = scaled_pix;
}
input->FromPix(shape, normed_pix, randomizer);
pixDestroy(&normed_pix);
}
} // namespace tesseract.