2016-11-08 07:38:07 +08:00
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
// File: weightmatrix.h
|
|
|
|
// Description: Hides distinction between float/int implementations.
|
|
|
|
// Author: Ray Smith
|
|
|
|
// Created: Tue Jun 17 11:46:20 PST 2014
|
|
|
|
//
|
|
|
|
// (C) Copyright 2014, Google Inc.
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#include "weightmatrix.h"
|
|
|
|
|
|
|
|
#undef NONX86_BUILD
|
|
|
|
#if defined(ANDROID_BUILD) or defined(__PPC__) or defined(_ARCH_PPC64)
|
|
|
|
#define NONX86_BUILD 1
|
|
|
|
#endif
|
|
|
|
|
2016-11-24 22:32:23 +08:00
|
|
|
#if defined(__linux__) && !defined(NONX86_BUILD)
|
2016-11-08 07:38:07 +08:00
|
|
|
#include <cpuid.h>
|
|
|
|
#endif
|
|
|
|
#include "dotproductavx.h"
|
|
|
|
#include "dotproductsse.h"
|
|
|
|
#include "statistc.h"
|
|
|
|
#include "svutil.h"
|
|
|
|
#include "tprintf.h"
|
|
|
|
|
|
|
|
namespace tesseract {
|
|
|
|
|
|
|
|
// Architecture detector. Add code here to detect any other architectures for
|
|
|
|
// SIMD-based faster dot product functions. Intended to be a single static
|
|
|
|
// object, but it does no real harm to have more than one.
|
|
|
|
class SIMDDetect {
|
|
|
|
public:
|
|
|
|
SIMDDetect()
|
|
|
|
: arch_tested_(false), avx_available_(false), sse_available_(false) {}
|
|
|
|
|
|
|
|
// Returns true if AVX is available on this system.
|
|
|
|
bool IsAVXAvailable() {
|
|
|
|
if (!arch_tested_) TestArchitecture();
|
|
|
|
return avx_available_;
|
|
|
|
}
|
|
|
|
// Returns true if SSE4.1 is available on this system.
|
|
|
|
bool IsSSEAvailable() {
|
|
|
|
if (!arch_tested_) TestArchitecture();
|
|
|
|
return sse_available_;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Tests the architecture in a system-dependent way to detect AVX, SSE and
|
|
|
|
// any other available SIMD equipment.
|
|
|
|
void TestArchitecture() {
|
|
|
|
SVAutoLock lock(&arch_mutex_);
|
|
|
|
if (arch_tested_) return;
|
|
|
|
#if defined(__linux__) && !defined(NONX86_BUILD)
|
|
|
|
if (__get_cpuid_max(0, NULL) >= 1) {
|
|
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
__get_cpuid(1, &eax, &ebx, &ecx, &edx);
|
|
|
|
sse_available_ = (ecx & 0x00080000) != 0;
|
|
|
|
avx_available_ = (ecx & 0x10000000) != 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if (avx_available_) tprintf("Found AVX\n");
|
|
|
|
if (sse_available_) tprintf("Found SSE\n");
|
|
|
|
arch_tested_ = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Detect architecture in only a single thread.
|
|
|
|
SVMutex arch_mutex_;
|
|
|
|
// Flag set to true after TestArchitecture has been called.
|
|
|
|
bool arch_tested_;
|
|
|
|
// If true, then AVX has been detected.
|
|
|
|
bool avx_available_;
|
|
|
|
// If true, then SSe4.1 has been detected.
|
|
|
|
bool sse_available_;
|
|
|
|
};
|
|
|
|
|
|
|
|
static SIMDDetect detector;
|
|
|
|
|
|
|
|
// Copies the whole input transposed, converted to double, into *this.
|
|
|
|
void TransposedArray::Transpose(const GENERIC_2D_ARRAY<double>& input) {
|
|
|
|
int width = input.dim1();
|
|
|
|
int num_features = input.dim2();
|
|
|
|
ResizeNoInit(num_features, width);
|
|
|
|
for (int t = 0; t < width; ++t) WriteStrided(t, input[t]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sets up the network for training. Initializes weights using weights of
|
|
|
|
// scale `range` picked according to the random number generator `randomizer`.
|
|
|
|
int WeightMatrix::InitWeightsFloat(int no, int ni, bool ada_grad,
|
|
|
|
float weight_range, TRand* randomizer) {
|
|
|
|
int_mode_ = false;
|
|
|
|
wf_.Resize(no, ni, 0.0);
|
|
|
|
if (randomizer != NULL) {
|
|
|
|
for (int i = 0; i < no; ++i) {
|
|
|
|
for (int j = 0; j < ni; ++j) {
|
|
|
|
wf_[i][j] = randomizer->SignedRand(weight_range);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2016-12-01 07:51:17 +08:00
|
|
|
InitBackward(ada_grad);
|
2016-11-08 07:38:07 +08:00
|
|
|
return ni * no;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Converts a float network to an int network. Each set of input weights that
|
|
|
|
// corresponds to a single output weight is converted independently:
|
|
|
|
// Compute the max absolute value of the weight set.
|
|
|
|
// Scale so the max absolute value becomes MAX_INT8.
|
|
|
|
// Round to integer.
|
|
|
|
// Store a multiplicative scale factor (as a double) that will reproduce
|
|
|
|
// the original value, subject to rounding errors.
|
|
|
|
void WeightMatrix::ConvertToInt() {
|
|
|
|
wi_.ResizeNoInit(wf_.dim1(), wf_.dim2());
|
|
|
|
scales_.init_to_size(wi_.dim1(), 0.0);
|
|
|
|
int dim2 = wi_.dim2();
|
|
|
|
for (int t = 0; t < wi_.dim1(); ++t) {
|
|
|
|
double* f_line = wf_[t];
|
|
|
|
inT8* i_line = wi_[t];
|
|
|
|
double max_abs = 0.0;
|
|
|
|
for (int f = 0; f < dim2; ++f) {
|
|
|
|
double abs_val = fabs(f_line[f]);
|
|
|
|
if (abs_val > max_abs) max_abs = abs_val;
|
|
|
|
}
|
|
|
|
double scale = max_abs / MAX_INT8;
|
|
|
|
scales_[t] = scale;
|
|
|
|
if (scale == 0.0) scale = 1.0;
|
|
|
|
for (int f = 0; f < dim2; ++f) {
|
|
|
|
i_line[f] = IntCastRounded(f_line[f] / scale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
wf_.Resize(1, 1, 0.0);
|
|
|
|
int_mode_ = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Allocates any needed memory for running Backward, and zeroes the deltas,
|
|
|
|
// thus eliminating any existing momentum.
|
2016-12-01 07:51:17 +08:00
|
|
|
void WeightMatrix::InitBackward(bool ada_grad) {
|
2016-11-08 07:38:07 +08:00
|
|
|
int no = int_mode_ ? wi_.dim1() : wf_.dim1();
|
|
|
|
int ni = int_mode_ ? wi_.dim2() : wf_.dim2();
|
2016-12-01 07:51:17 +08:00
|
|
|
use_ada_grad_ = ada_grad;
|
2016-11-08 07:38:07 +08:00
|
|
|
dw_.Resize(no, ni, 0.0);
|
|
|
|
updates_.Resize(no, ni, 0.0);
|
|
|
|
wf_t_.Transpose(wf_);
|
2016-12-01 07:51:17 +08:00
|
|
|
if (use_ada_grad_) dw_sq_sum_.Resize(no, ni, 0.0);
|
2016-11-08 07:38:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Flag on mode to indicate that this weightmatrix uses inT8.
|
|
|
|
const int kInt8Flag = 1;
|
|
|
|
// Flag on mode to indicate that this weightmatrix uses ada grad.
|
|
|
|
const int kAdaGradFlag = 4;
|
|
|
|
// Flag on mode to indicate that this weightmatrix uses double. Set
|
|
|
|
// independently of kInt8Flag as even in int mode the scales can
|
|
|
|
// be float or double.
|
|
|
|
const int kDoubleFlag = 128;
|
|
|
|
|
|
|
|
// Writes to the given file. Returns false in case of error.
|
|
|
|
bool WeightMatrix::Serialize(bool training, TFile* fp) const {
|
2016-11-22 15:20:05 +08:00
|
|
|
// For backward compatibility, add kDoubleFlag to mode to indicate the doubles
|
2016-11-08 07:38:07 +08:00
|
|
|
// format, without errs, so we can detect and read old format weight matrices.
|
|
|
|
uinT8 mode = (int_mode_ ? kInt8Flag : 0) |
|
|
|
|
(use_ada_grad_ ? kAdaGradFlag : 0) | kDoubleFlag;
|
|
|
|
if (fp->FWrite(&mode, sizeof(mode), 1) != 1) return false;
|
|
|
|
if (int_mode_) {
|
|
|
|
if (!wi_.Serialize(fp)) return false;
|
|
|
|
if (!scales_.Serialize(fp)) return false;
|
|
|
|
} else {
|
|
|
|
if (!wf_.Serialize(fp)) return false;
|
|
|
|
if (training && !updates_.Serialize(fp)) return false;
|
|
|
|
if (training && use_ada_grad_ && !dw_sq_sum_.Serialize(fp)) return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reads from the given file. Returns false in case of error.
|
|
|
|
// If swap is true, assumes a big/little-endian swap is needed.
|
|
|
|
bool WeightMatrix::DeSerialize(bool training, bool swap, TFile* fp) {
|
|
|
|
uinT8 mode = 0;
|
|
|
|
if (fp->FRead(&mode, sizeof(mode), 1) != 1) return false;
|
|
|
|
int_mode_ = (mode & kInt8Flag) != 0;
|
|
|
|
use_ada_grad_ = (mode & kAdaGradFlag) != 0;
|
|
|
|
if ((mode & kDoubleFlag) == 0) return DeSerializeOld(training, swap, fp);
|
|
|
|
if (int_mode_) {
|
|
|
|
if (!wi_.DeSerialize(swap, fp)) return false;
|
|
|
|
if (!scales_.DeSerialize(swap, fp)) return false;
|
|
|
|
} else {
|
|
|
|
if (!wf_.DeSerialize(swap, fp)) return false;
|
|
|
|
if (training) {
|
2016-12-01 07:51:17 +08:00
|
|
|
InitBackward(use_ada_grad_);
|
2016-11-08 07:38:07 +08:00
|
|
|
if (!updates_.DeSerialize(swap, fp)) return false;
|
|
|
|
if (use_ada_grad_ && !dw_sq_sum_.DeSerialize(swap, fp)) return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// As DeSerialize, but reads an old (float) format WeightMatrix for
|
2016-11-22 15:20:05 +08:00
|
|
|
// backward compatibility.
|
2016-11-08 07:38:07 +08:00
|
|
|
bool WeightMatrix::DeSerializeOld(bool training, bool swap, TFile* fp) {
|
|
|
|
GENERIC_2D_ARRAY<float> float_array;
|
|
|
|
if (int_mode_) {
|
|
|
|
if (!wi_.DeSerialize(swap, fp)) return false;
|
|
|
|
GenericVector<float> old_scales;
|
|
|
|
if (!old_scales.DeSerialize(swap, fp)) return false;
|
|
|
|
scales_.init_to_size(old_scales.size(), 0.0);
|
|
|
|
for (int i = 0; i < old_scales.size(); ++i) scales_[i] = old_scales[i];
|
|
|
|
} else {
|
|
|
|
if (!float_array.DeSerialize(swap, fp)) return false;
|
|
|
|
FloatToDouble(float_array, &wf_);
|
|
|
|
}
|
|
|
|
if (training) {
|
2016-12-01 07:51:17 +08:00
|
|
|
InitBackward(use_ada_grad_);
|
2016-11-08 07:38:07 +08:00
|
|
|
if (!float_array.DeSerialize(swap, fp)) return false;
|
|
|
|
FloatToDouble(float_array, &updates_);
|
|
|
|
// Errs was only used in int training, which is now dead.
|
|
|
|
if (!float_array.DeSerialize(swap, fp)) return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Computes matrix.vector v = Wu.
|
|
|
|
// u is of size W.dim2() - 1 and the output v is of size W.dim1().
|
|
|
|
// u is imagined to have an extra element at the end with value 1, to
|
|
|
|
// implement the bias, but it doesn't actually have it.
|
|
|
|
// Asserts that the call matches what we have.
|
|
|
|
void WeightMatrix::MatrixDotVector(const double* u, double* v) const {
|
|
|
|
ASSERT_HOST(!int_mode_);
|
|
|
|
MatrixDotVectorInternal(wf_, true, false, u, v);
|
|
|
|
}
|
|
|
|
|
|
|
|
void WeightMatrix::MatrixDotVector(const inT8* u, double* v) const {
|
|
|
|
ASSERT_HOST(int_mode_);
|
|
|
|
int num_out = wi_.dim1();
|
|
|
|
int num_in = wi_.dim2() - 1;
|
|
|
|
for (int i = 0; i < num_out; ++i) {
|
|
|
|
const inT8* Wi = wi_[i];
|
|
|
|
int total = 0;
|
|
|
|
if (detector.IsSSEAvailable()) {
|
|
|
|
total = IntDotProductSSE(u, Wi, num_in);
|
|
|
|
} else {
|
|
|
|
for (int j = 0; j < num_in; ++j) total += Wi[j] * u[j];
|
|
|
|
}
|
|
|
|
// Add in the bias and correct for integer values.
|
|
|
|
v[i] = (static_cast<double>(total) / MAX_INT8 + Wi[num_in]) * scales_[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// MatrixDotVector for peep weights, MultiplyAccumulate adds the
|
|
|
|
// component-wise products of *this[0] and v to inout.
|
|
|
|
void WeightMatrix::MultiplyAccumulate(const double* v, double* inout) {
|
|
|
|
ASSERT_HOST(!int_mode_);
|
|
|
|
ASSERT_HOST(wf_.dim1() == 1);
|
|
|
|
int n = wf_.dim2();
|
|
|
|
const double* u = wf_[0];
|
|
|
|
for (int i = 0; i < n; ++i) {
|
|
|
|
inout[i] += u[i] * v[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Computes vector.matrix v = uW.
|
|
|
|
// u is of size W.dim1() and the output v is of size W.dim2() - 1.
|
|
|
|
// The last result is discarded, as v is assumed to have an imaginary
|
|
|
|
// last value of 1, as with MatrixDotVector.
|
|
|
|
void WeightMatrix::VectorDotMatrix(const double* u, double* v) const {
|
|
|
|
ASSERT_HOST(!int_mode_);
|
|
|
|
MatrixDotVectorInternal(wf_t_, false, true, u, v);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fills dw_[i][j] with the dot product u[i][] . v[j][], using elements from
|
|
|
|
// u and v. In terms of the neural network, u is the gradients and v is the
|
|
|
|
// inputs.
|
|
|
|
// Note that (matching MatrixDotVector) v[last][] is missing, presumed 1.0.
|
|
|
|
// Runs parallel if requested. Note that u and v must be transposed.
|
|
|
|
void WeightMatrix::SumOuterTransposed(const TransposedArray& u,
|
|
|
|
const TransposedArray& v,
|
|
|
|
bool in_parallel) {
|
|
|
|
ASSERT_HOST(!int_mode_);
|
|
|
|
int num_outputs = dw_.dim1();
|
|
|
|
ASSERT_HOST(u.dim1() == num_outputs);
|
|
|
|
ASSERT_HOST(u.dim2() == v.dim2());
|
|
|
|
int num_inputs = dw_.dim2() - 1;
|
|
|
|
int num_samples = u.dim2();
|
|
|
|
// v is missing the last element in dim1.
|
|
|
|
ASSERT_HOST(v.dim1() == num_inputs);
|
|
|
|
#ifdef _OPENMP
|
|
|
|
#pragma omp parallel for num_threads(4) if (in_parallel)
|
|
|
|
#endif
|
|
|
|
for (int i = 0; i < num_outputs; ++i) {
|
|
|
|
double* dwi = dw_[i];
|
|
|
|
const double* ui = u[i];
|
|
|
|
for (int j = 0; j < num_inputs; ++j) {
|
|
|
|
dwi[j] = DotProduct(ui, v[j], num_samples);
|
|
|
|
}
|
|
|
|
// The last element of v is missing, presumed 1.0f.
|
|
|
|
double total = 0.0;
|
|
|
|
for (int k = 0; k < num_samples; ++k) total += ui[k];
|
|
|
|
dwi[num_inputs] = total;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Updates the weights using the given learning rate and momentum.
|
|
|
|
// num_samples is the quotient to be used in the adagrad computation iff
|
|
|
|
// use_ada_grad_ is true.
|
|
|
|
void WeightMatrix::Update(double learning_rate, double momentum,
|
|
|
|
int num_samples) {
|
|
|
|
ASSERT_HOST(!int_mode_);
|
|
|
|
if (use_ada_grad_ && num_samples > 0) {
|
|
|
|
dw_sq_sum_.SumSquares(dw_);
|
|
|
|
dw_.AdaGradScaling(dw_sq_sum_, num_samples);
|
|
|
|
}
|
|
|
|
dw_ *= learning_rate;
|
|
|
|
updates_ += dw_;
|
|
|
|
if (momentum > 0.0) wf_ += updates_;
|
|
|
|
if (momentum >= 0.0) updates_ *= momentum;
|
|
|
|
wf_t_.Transpose(wf_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Adds the dw_ in other to the dw_ is *this.
|
|
|
|
void WeightMatrix::AddDeltas(const WeightMatrix& other) {
|
|
|
|
ASSERT_HOST(dw_.dim1() == other.dw_.dim1());
|
|
|
|
ASSERT_HOST(dw_.dim2() == other.dw_.dim2());
|
|
|
|
dw_ += other.dw_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sums the products of weight updates in *this and other, splitting into
|
|
|
|
// positive (same direction) in *same and negative (different direction) in
|
|
|
|
// *changed.
|
|
|
|
void WeightMatrix::CountAlternators(const WeightMatrix& other, double* same,
|
|
|
|
double* changed) const {
|
|
|
|
int num_outputs = updates_.dim1();
|
|
|
|
int num_inputs = updates_.dim2();
|
|
|
|
ASSERT_HOST(num_outputs == other.updates_.dim1());
|
|
|
|
ASSERT_HOST(num_inputs == other.updates_.dim2());
|
|
|
|
for (int i = 0; i < num_outputs; ++i) {
|
|
|
|
const double* this_i = updates_[i];
|
|
|
|
const double* other_i = other.updates_[i];
|
|
|
|
for (int j = 0; j < num_inputs; ++j) {
|
|
|
|
double product = this_i[j] * other_i[j];
|
|
|
|
if (product < 0.0)
|
|
|
|
*changed -= product;
|
|
|
|
else
|
|
|
|
*same += product;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Helper computes an integer histogram bucket for a weight and adds it
|
|
|
|
// to the histogram.
|
|
|
|
const int kHistogramBuckets = 16;
|
|
|
|
static void HistogramWeight(double weight, STATS* histogram) {
|
|
|
|
int bucket = kHistogramBuckets - 1;
|
|
|
|
if (weight != 0.0) {
|
|
|
|
double logval = -log2(fabs(weight));
|
|
|
|
bucket = ClipToRange(IntCastRounded(logval), 0, kHistogramBuckets - 1);
|
|
|
|
}
|
|
|
|
histogram->add(bucket, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void WeightMatrix::Debug2D(const char* msg) {
|
|
|
|
STATS histogram(0, kHistogramBuckets);
|
|
|
|
if (int_mode_) {
|
|
|
|
for (int i = 0; i < wi_.dim1(); ++i) {
|
|
|
|
for (int j = 0; j < wi_.dim2(); ++j) {
|
|
|
|
HistogramWeight(wi_[i][j] * scales_[i], &histogram);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int i = 0; i < wf_.dim1(); ++i) {
|
|
|
|
for (int j = 0; j < wf_.dim2(); ++j) {
|
|
|
|
HistogramWeight(wf_[i][j], &histogram);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
tprintf("%s\n", msg);
|
|
|
|
histogram.print();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Computes and returns the dot product of the two n-vectors u and v.
|
|
|
|
/* static */
|
|
|
|
double WeightMatrix::DotProduct(const double* u, const double* v, int n) {
|
|
|
|
// Note: because the order of addition is different among the 3 DotProduct
|
|
|
|
// functions, the results can (and do) vary slightly (although they agree
|
|
|
|
// to within about 4e-15). This produces different results when running
|
|
|
|
// training, despite all random inputs being precisely equal.
|
|
|
|
// To get consistent results, use just one of these DotProduct functions.
|
|
|
|
// On a test multi-layer network, serial is 57% slower than sse, and avx
|
|
|
|
// is about 8% faster than sse. This suggests that the time is memory
|
|
|
|
// bandwidth constrained and could benefit from holding the reused vector
|
|
|
|
// in AVX registers.
|
|
|
|
if (detector.IsAVXAvailable()) return DotProductAVX(u, v, n);
|
|
|
|
if (detector.IsSSEAvailable()) return DotProductSSE(u, v, n);
|
|
|
|
double total = 0.0;
|
|
|
|
for (int k = 0; k < n; ++k) total += u[k] * v[k];
|
|
|
|
return total;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Utility function converts an array of float to the corresponding array
|
|
|
|
// of double.
|
|
|
|
/* static */
|
|
|
|
void WeightMatrix::FloatToDouble(const GENERIC_2D_ARRAY<float>& wf,
|
|
|
|
GENERIC_2D_ARRAY<double>* wd) {
|
|
|
|
int dim1 = wf.dim1();
|
|
|
|
int dim2 = wf.dim2();
|
|
|
|
wd->ResizeNoInit(dim1, dim2);
|
|
|
|
for (int i = 0; i < dim1; ++i) {
|
|
|
|
const float* wfi = wf[i];
|
|
|
|
double* wdi = (*wd)[i];
|
|
|
|
for (int j = 0; j < dim2; ++j) wdi[j] = static_cast<double>(wfi[j]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Computes matrix.vector v = Wu.
|
|
|
|
// u is of size W.dim2() - add_bias_fwd and the output v is of size
|
|
|
|
// W.dim1() - skip_bias_back.
|
|
|
|
// If add_bias_fwd, u is imagined to have an extra element at the end with value
|
|
|
|
// 1, to implement the bias, weight.
|
|
|
|
// If skip_bias_back, we are actullay performing the backwards product on a
|
|
|
|
// transposed matrix, so we need to drop the v output corresponding to the last
|
|
|
|
// element in dim1.
|
|
|
|
void WeightMatrix::MatrixDotVectorInternal(const GENERIC_2D_ARRAY<double>& w,
|
|
|
|
bool add_bias_fwd,
|
|
|
|
bool skip_bias_back, const double* u,
|
|
|
|
double* v) {
|
|
|
|
int num_results = w.dim1() - skip_bias_back;
|
|
|
|
int extent = w.dim2() - add_bias_fwd;
|
|
|
|
for (int i = 0; i < num_results; ++i) {
|
|
|
|
const double* wi = w[i];
|
|
|
|
double total = DotProduct(wi, u, extent);
|
|
|
|
if (add_bias_fwd) total += wi[extent]; // The bias value.
|
|
|
|
v[i] = total;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace tesseract.
|
|
|
|
|
|
|
|
#undef NONX86_BUILD
|