tesseract/ccmain/paragraphs_internal.h

313 lines
12 KiB
C
Raw Normal View History

/**********************************************************************
* File: paragraphs.h
* Description: Paragraph Detection internal data structures.
* Author: David Eger
* Created: 11 March 2011
*
* (C) Copyright 2011, Google Inc.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#ifndef TESSERACT_CCMAIN_PARAGRAPHS_INTERNAL_H_
#define TESSERACT_CCMAIN_PARAGRAPHS_INTERNAL_H_
#include "paragraphs.h"
#ifdef _MSC_VER
#include <string>
#else
#include "strings.h"
#endif
// NO CODE OUTSIDE OF paragraphs.cpp AND TESTS SHOULD NEED TO ACCESS
// DATA STRUCTURES OR FUNCTIONS IN THIS FILE.
class WERD_CHOICE;
namespace tesseract {
// Return whether the given word is likely to be a list item start word.
bool AsciiLikelyListItem(const STRING &word);
// Return the first Unicode Codepoint from werd[pos].
int UnicodeFor(const UNICHARSET *u, const WERD_CHOICE *werd, int pos);
// Set right word attributes given either a unicharset and werd or a utf8
// string.
void RightWordAttributes(const UNICHARSET *unicharset, const WERD_CHOICE *werd,
const STRING &utf8,
bool *is_list, bool *starts_idea, bool *ends_idea);
// Set left word attributes given either a unicharset and werd or a utf8 string.
void LeftWordAttributes(const UNICHARSET *unicharset, const WERD_CHOICE *werd,
const STRING &utf8,
bool *is_list, bool *starts_idea, bool *ends_idea);
enum LineType {
LT_START = 'S', // First line of a paragraph.
LT_BODY = 'C', // Continuation line of a paragraph.
LT_UNKNOWN = 'U', // No clues.
LT_MULTIPLE = 'M', // Matches for both LT_START and LT_BODY.
};
// The first paragraph in a page of body text is often un-indented.
// This is a typographic convention which is common to indicate either that:
// (1) The paragraph is the continuation of a previous paragraph, or
// (2) The paragraph is the first paragraph in a chapter.
//
// I refer to such paragraphs as "crown"s, and the output of the paragraph
// detection algorithm attempts to give them the same paragraph model as
// the rest of the body text.
//
// Nonetheless, while building hypotheses, it is useful to mark the lines
// of crown paragraphs temporarily as crowns, either aligned left or right.
extern const ParagraphModel *kCrownLeft;
extern const ParagraphModel *kCrownRight;
inline bool StrongModel(const ParagraphModel *model) {
return model != NULL && model != kCrownLeft && model != kCrownRight;
}
struct LineHypothesis {
LineHypothesis() : ty(LT_UNKNOWN), model(NULL) {}
LineHypothesis(LineType line_type, const ParagraphModel *m)
: ty(line_type), model(m) {}
LineHypothesis(const LineHypothesis &other)
: ty(other.ty), model(other.model) {}
bool operator==(const LineHypothesis &other) const {
return ty == other.ty && model == other.model;
}
LineType ty;
const ParagraphModel *model;
};
class ParagraphTheory; // Forward Declaration
typedef GenericVectorEqEq<const ParagraphModel *> SetOfModels;
// Row Scratch Registers are data generated by the paragraph detection
// algorithm based on a RowInfo input.
class RowScratchRegisters {
public:
// We presume row will outlive us.
void Init(const RowInfo &row);
LineType GetLineType() const;
LineType GetLineType(const ParagraphModel *model) const;
// Mark this as a start line type, sans model. This is useful for the
// initial marking of probable body lines or paragraph start lines.
void SetStartLine();
// Mark this as a body line type, sans model. This is useful for the
// initial marking of probably body lines or paragraph start lines.
void SetBodyLine();
// Record that this row fits as a paragraph start line in the given model,
void AddStartLine(const ParagraphModel *model);
// Record that this row fits as a paragraph body line in the given model,
void AddBodyLine(const ParagraphModel *model);
// Clear all hypotheses about this line.
void SetUnknown() { hypotheses_.truncate(0); }
// Append all hypotheses of strong models that match this row as a start.
void StartHypotheses(SetOfModels *models) const;
// Append all hypotheses of strong models matching this row.
void StrongHypotheses(SetOfModels *models) const;
// Append all hypotheses for this row.
void NonNullHypotheses(SetOfModels *models) const;
// Discard any hypotheses whose model is not in the given list.
void DiscardNonMatchingHypotheses(const SetOfModels &models);
// If we have only one hypothesis and that is that this line is a paragraph
// start line of a certain model, return that model. Else return NULL.
const ParagraphModel *UniqueStartHypothesis() const;
// If we have only one hypothesis and that is that this line is a paragraph
// body line of a certain model, return that model. Else return NULL.
const ParagraphModel *UniqueBodyHypothesis() const;
// Return the indentation for the side opposite of the aligned side.
int OffsideIndent(tesseract::ParagraphJustification just) const {
switch (just) {
case tesseract::JUSTIFICATION_RIGHT: return lindent_;
case tesseract::JUSTIFICATION_LEFT: return rindent_;
default: return lindent_ > rindent_ ? lindent_ : rindent_;
}
}
// Return the indentation for the side the text is aligned to.
int AlignsideIndent(tesseract::ParagraphJustification just) const {
switch (just) {
case tesseract::JUSTIFICATION_RIGHT: return rindent_;
case tesseract::JUSTIFICATION_LEFT: return lindent_;
default: return lindent_ > rindent_ ? lindent_ : rindent_;
}
}
// Append header fields to a vector of row headings.
static void AppendDebugHeaderFields(GenericVector<STRING> *header);
// Append data for this row to a vector of debug strings.
void AppendDebugInfo(const ParagraphTheory &theory,
GenericVector<STRING> *dbg) const;
const RowInfo *ri_;
// These four constants form a horizontal box model for the white space
// on the edges of each line. At each point in the algorithm, the following
// shall hold:
// ri_->pix_ldistance = lmargin_ + lindent_
// ri_->pix_rdistance = rindent_ + rmargin_
int lmargin_;
int lindent_;
int rindent_;
int rmargin_;
private:
// Hypotheses of either LT_START or LT_BODY
GenericVectorEqEq<LineHypothesis> hypotheses_;
};
// A collection of convenience functions for wrapping the set of
// Paragraph Models we believe correctly model the paragraphs in the image.
class ParagraphTheory {
public:
// We presume models will outlive us, and that models will take ownership
// of any ParagraphModel *'s we add.
explicit ParagraphTheory(GenericVector<ParagraphModel *> *models)
: models_(models) {}
GenericVector<ParagraphModel *> &models() { return *models_; }
const GenericVector<ParagraphModel *> &models() const { return *models_; }
// Return an existing model if one that is Comparable() can be found.
// Else, allocate a new copy of model to save and return a pointer to it.
const ParagraphModel *AddModel(const ParagraphModel &model);
// Discard any models we've made that are not in the list of used models.
void DiscardUnusedModels(const SetOfModels &used_models);
// Return the set of all non-centered models.
void NonCenteredModels(SetOfModels *models);
// If any of the non-centered paragraph models we know about fit
// rows[start, end), return it. Else NULL.
const ParagraphModel *Fits(const GenericVector<RowScratchRegisters> *rows,
int start, int end) const;
int IndexOf(const ParagraphModel *model) const;
private:
GenericVector<ParagraphModel *> *models_;
GenericVectorEqEq<ParagraphModel *> models_we_added_;
};
bool ValidFirstLine(const GenericVector<RowScratchRegisters> *rows,
int row, const ParagraphModel *model);
bool ValidBodyLine(const GenericVector<RowScratchRegisters> *rows,
int row, const ParagraphModel *model);
bool CrownCompatible(const GenericVector<RowScratchRegisters> *rows,
int a, int b, const ParagraphModel *model);
// A class for smearing Paragraph Model hypotheses to surrounding rows.
// The idea here is that StrongEvidenceClassify first marks only exceedingly
// obvious start and body rows and constructs models of them. Thereafter,
// we may have left over unmarked lines (mostly end-of-paragraph lines) which
// were too short to have much confidence about, but which fit the models we've
// constructed perfectly and which we ought to mark. This class is used to
// "smear" our models over the text.
class ParagraphModelSmearer {
public:
ParagraphModelSmearer(GenericVector<RowScratchRegisters> *rows,
int row_start, int row_end,
ParagraphTheory *theory);
// Smear forward paragraph models from existing row markings to subsequent
// text lines if they fit, and mark any thereafter still unmodeled rows
// with any model in the theory that fits them.
void Smear();
private:
// Record in open_models_ for rows [start_row, end_row) the list of models
// currently open at each row.
// A model is still open in a row if some previous row has said model as a
// start hypothesis, and all rows since (including this row) would fit as
// either a body or start line in that model.
void CalculateOpenModels(int row_start, int row_end);
SetOfModels &OpenModels(int row) {
return open_models_[row - row_start_ + 1];
}
ParagraphTheory *theory_;
GenericVector<RowScratchRegisters> *rows_;
int row_start_;
int row_end_;
// open_models_ corresponds to rows[start_row_ - 1, end_row_]
//
// open_models_: Contains models which there was an active (open) paragraph
// as of the previous line and for which the left and right
// indents admit the possibility that this text line continues
// to fit the same model.
// TODO(eger): Think about whether we can get rid of "Open" models and just
// use the current hypotheses on RowScratchRegisters.
GenericVector<SetOfModels> open_models_;
};
// Clear all hypotheses about lines [start, end) and reset the margins to the
// percentile (0..100) value of the left and right row edges for this run of
// rows.
void RecomputeMarginsAndClearHypotheses(
GenericVector<RowScratchRegisters> *rows, int start, int end,
int percentile);
// Return the median inter-word space in rows[row_start, row_end).
int InterwordSpace(const GenericVector<RowScratchRegisters> &rows,
int row_start, int row_end);
// Return whether the first word on the after line can fit in the space at
// the end of the before line (knowing which way the text is aligned and read).
bool FirstWordWouldHaveFit(const RowScratchRegisters &before,
const RowScratchRegisters &after,
tesseract::ParagraphJustification justification);
// Return whether the first word on the after line can fit in the space at
// the end of the before line (not knowing the text alignment).
bool FirstWordWouldHaveFit(const RowScratchRegisters &before,
const RowScratchRegisters &after);
// Do rows[start, end) form a single instance of the given paragraph model?
bool RowsFitModel(const GenericVector<RowScratchRegisters> *rows,
int start, int end, const ParagraphModel *model);
// Do the text and geometry of two rows support a paragraph break between them?
bool LikelyParagraphStart(const RowScratchRegisters &before,
const RowScratchRegisters &after,
tesseract::ParagraphJustification j);
// Given a set of row_owners pointing to PARAs or NULL (no paragraph known),
// normalize each row_owner to point to an actual PARA, and output the
// paragraphs in order onto paragraphs.
void CanonicalizeDetectionResults(
GenericVector<PARA *> *row_owners,
PARA_LIST *paragraphs);
} // namespace
#endif // TESSERACT_CCMAIN_PARAGRAPHS_INTERNAL_H_