tesseract/unittest/lstmtrainer_test.cc

93 lines
3.9 KiB
C++
Raw Normal View History

#include "leptonica/include/allheaders.h"
#include "tesseract/api/baseapi.h"
#include "tesseract/unittest/lstm_test.h"
namespace tesseract {
namespace {
TEST_F(LSTMTrainerTest, EncodesEng) {
TestEncodeDecodeBoth("eng",
"The quick brown 'fox' jumps over: the lazy dog!");
}
TEST_F(LSTMTrainerTest, EncodesKan) {
TestEncodeDecodeBoth("kan", "ಫ್ರಬ್ರವರಿ ತತ್ವಾಂಶಗಳೆಂದರೆ ಮತ್ತು ಜೊತೆಗೆ ಕ್ರಮವನ್ನು");
}
TEST_F(LSTMTrainerTest, EncodesKor) {
TestEncodeDecodeBoth("kor",
"이는 것으로 다시 넣을 수는 있지만 선택의 의미는");
}
TEST_F(LSTMTrainerTest, MapCoder) {
LSTMTrainer fra_trainer;
fra_trainer.InitCharSet(TestDataNameToPath("fra.traineddata"));
LSTMTrainer deu_trainer;
deu_trainer.InitCharSet(TestDataNameToPath("deu.traineddata"));
// A string that uses characters common to French and German.
string kTestStr = "The quick brown 'fox' jumps over: the lazy dog!";
GenericVector<int> deu_labels;
EXPECT_TRUE(deu_trainer.EncodeString(kTestStr.c_str(), &deu_labels));
// The french trainer cannot decode them correctly.
STRING badly_decoded = fra_trainer.DecodeLabels(deu_labels);
string bad_str(&badly_decoded[0], badly_decoded.length());
EXPECT_NE(kTestStr, bad_str);
// Encode the string as fra.
GenericVector<int> fra_labels;
EXPECT_TRUE(fra_trainer.EncodeString(kTestStr.c_str(), &fra_labels));
// Use the mapper to compute what the labels are as deu.
std::vector<int> mapping = fra_trainer.MapRecoder(deu_trainer.GetUnicharset(),
deu_trainer.GetRecoder());
GenericVector<int> mapped_fra_labels(fra_labels.size(), -1);
for (int i = 0; i < fra_labels.size(); ++i) {
mapped_fra_labels[i] = mapping[fra_labels[i]];
EXPECT_NE(-1, mapped_fra_labels[i]) << "i=" << i << ", ch=" << kTestStr[i];
EXPECT_EQ(mapped_fra_labels[i], deu_labels[i])
<< "i=" << i << ", ch=" << kTestStr[i]
<< " has deu label=" << deu_labels[i] << ", but mapped to "
<< mapped_fra_labels[i];
}
// The german trainer can now decode them correctly.
STRING decoded = deu_trainer.DecodeLabels(mapped_fra_labels);
string ok_str(&decoded[0], decoded.length());
EXPECT_EQ(kTestStr, ok_str);
}
// Tests that the actual fra model can be converted to the deu character set
// and still read an eng image with 100% accuracy.
TEST_F(LSTMTrainerTest, ConvertModel) {
// Setup a trainer with a deu charset.
LSTMTrainer deu_trainer;
deu_trainer.InitCharSet(TestDataNameToPath("deu.traineddata"));
// Load the fra traineddata, strip out the model, and save to a tmp file.
TessdataManager mgr;
string fra_data = file::JoinPath(
FLAGS_test_srcdir, "tessdata_best",
"fra.traineddata");
CHECK(mgr.Init(fra_data.c_str())) << "Failed to load " << fra_data;
string model_path = file::JoinPath(FLAGS_test_tmpdir, "fra.lstm");
CHECK(mgr.ExtractToFile(model_path.c_str()));
// Load the fra model into the deu_trainer, and save the converted model.
CHECK(deu_trainer.TryLoadingCheckpoint(model_path.c_str(), fra_data.c_str()))
<< "Failed checkpoint load for " << model_path << " and " << fra_data;
string deu_data = file::JoinPath(FLAGS_test_tmpdir, "deu.traineddata");
CHECK(deu_trainer.SaveTraineddata(deu_data.c_str()));
// Now run the saved model on phototest. (See BasicTesseractTest in
// baseapi_test.cc).
TessBaseAPI api;
api.Init(FLAGS_test_tmpdir.c_str(), "deu", tesseract::OEM_LSTM_ONLY);
Pix *src_pix = pixRead(TestDataNameToPath("phototest.tif").c_str());
CHECK(src_pix);
api.SetImage(src_pix);
std::unique_ptr<char[]> result(api.GetUTF8Text());
string truth_text;
CHECK_OK(file::GetContents(TestDataNameToPath("phototest.gold.txt"),
&truth_text, file::Defaults()));
EXPECT_STREQ(truth_text.c_str(), result.get());
pixDestroy(&src_pix);
}
} // namespace
} // namespace tesseract