tesseract/unittest/intfeaturemap_test.cc

123 lines
4.8 KiB
C++
Raw Normal View History

// (C) Copyright 2017, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "intfeaturemap.h"
#include "intfeaturespace.h"
#include "include_gunit.h"
using tesseract::IntFeatureMap;
using tesseract::IntFeatureSpace;
// Random re-quantization to test that they don't have to be easy.
// WARNING! Change these and change the expected_misses calculation below.
const int kXBuckets = 16;
const int kYBuckets = 24;
const int kThetaBuckets = 13;
namespace {
class IntFeatureMapTest : public testing::Test {
public:
// Expects that the given vector has continguous integer values in the
// range [start, end).
void ExpectContiguous(const GenericVector<int>& v, int start, int end) {
for (int i = start; i < end; ++i) {
EXPECT_EQ(i, v[i - start]);
}
}
};
// Tests the IntFeatureMap and implicitly the IntFeatureSpace underneath.
TEST_F(IntFeatureMapTest, Exhaustive) {
IntFeatureSpace space;
space.Init(kXBuckets, kYBuckets, kThetaBuckets);
IntFeatureMap map;
map.Init(space);
int total_size = kIntFeatureExtent * kIntFeatureExtent * kIntFeatureExtent;
std::unique_ptr<INT_FEATURE_STRUCT[]> features(
new INT_FEATURE_STRUCT[total_size]);
// Fill the features with every value.
for (int y = 0; y < kIntFeatureExtent; ++y) {
for (int x = 0; x < kIntFeatureExtent; ++x) {
for (int theta = 0; theta < kIntFeatureExtent; ++theta) {
int f_index = (y * kIntFeatureExtent + x) * kIntFeatureExtent + theta;
features[f_index].X = x;
features[f_index].Y = y;
features[f_index].Theta = theta;
}
}
}
GenericVector<int> index_features;
map.IndexAndSortFeatures(features.get(), total_size, &index_features);
EXPECT_EQ(total_size, index_features.size());
int total_buckets = kXBuckets * kYBuckets * kThetaBuckets;
GenericVector<int> map_features;
int misses = map.MapIndexedFeatures(index_features, &map_features);
EXPECT_EQ(0, misses);
EXPECT_EQ(total_buckets, map_features.size());
ExpectContiguous(map_features, 0, total_buckets);
EXPECT_EQ(total_buckets, map.compact_size());
EXPECT_EQ(total_buckets, map.sparse_size());
// Every offset should be within dx, dy, dtheta of the start point.
int dx = kIntFeatureExtent / kXBuckets + 1;
int dy = kIntFeatureExtent / kYBuckets + 1;
int dtheta = kIntFeatureExtent / kThetaBuckets + 1;
int bad_offsets = 0;
for (int index = 0; index < total_buckets; ++index) {
for (int dir = -tesseract::kNumOffsetMaps; dir <= tesseract::kNumOffsetMaps;
++dir) {
int offset_index = map.OffsetFeature(index, dir);
if (dir == 0) {
EXPECT_EQ(index, offset_index);
} else if (offset_index >= 0) {
INT_FEATURE_STRUCT f = map.InverseIndexFeature(index);
INT_FEATURE_STRUCT f2 = map.InverseIndexFeature(offset_index);
EXPECT_TRUE(f.X != f2.X || f.Y != f2.Y || f.Theta != f2.Theta);
EXPECT_LE(abs(f.X - f2.X), dx);
EXPECT_LE(abs(f.Y - f2.Y), dy);
int theta_delta = abs(f.Theta - f2.Theta);
if (theta_delta > kIntFeatureExtent / 2)
theta_delta = kIntFeatureExtent - theta_delta;
EXPECT_LE(theta_delta, dtheta);
} else {
++bad_offsets;
INT_FEATURE_STRUCT f = map.InverseIndexFeature(index);
}
}
}
EXPECT_LE(bad_offsets, (kXBuckets + kYBuckets) * kThetaBuckets);
// To test the mapping further, delete the 1st and last map feature, and
// test again.
map.DeleteMapFeature(0);
map.DeleteMapFeature(total_buckets - 1);
map.FinalizeMapping(nullptr);
map.IndexAndSortFeatures(features.get(), total_size, &index_features);
// Has no effect on index features.
EXPECT_EQ(total_size, index_features.size());
misses = map.MapIndexedFeatures(index_features, &map_features);
int expected_misses = (kIntFeatureExtent / kXBuckets) *
(kIntFeatureExtent / kYBuckets) *
(kIntFeatureExtent / kThetaBuckets + 1);
expected_misses += (kIntFeatureExtent / kXBuckets) *
(kIntFeatureExtent / kYBuckets + 1) *
(kIntFeatureExtent / kThetaBuckets);
EXPECT_EQ(expected_misses, misses);
EXPECT_EQ(total_buckets - 2, map_features.size());
ExpectContiguous(map_features, 0, total_buckets - 2);
EXPECT_EQ(total_buckets - 2, map.compact_size());
EXPECT_EQ(total_buckets, map.sparse_size());
}
} // namespace.