tesseract/ccmain/baseapi.cpp

678 lines
25 KiB
C++
Raw Normal View History

/**********************************************************************
* File: baseapi.cpp
* Description: Simple API for calling tesseract.
* Author: Ray Smith
* Created: Fri Oct 06 15:35:01 PDT 2006
*
* (C) Copyright 2006, Google Inc.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "baseapi.h"
#include "tessedit.h"
#include "ocrclass.h"
#include "pageres.h"
#include "tessvars.h"
#include "control.h"
#include "applybox.h"
#include "pgedit.h"
#include "varabled.h"
#include "output.h"
#include "adaptmatch.h"
BOOL_VAR(tessedit_resegment_from_boxes, FALSE,
"Take segmentation and labeling from box file");
BOOL_VAR(tessedit_train_from_boxes, FALSE,
"Generate training data from boxed chars");
// Minimum sensible image size to be worth running tesseract.
const int kMinRectSize = 10;
static STRING input_file = "noname.tif";
// Start tesseract.
// The datapath must be the name of the data directory or some other file
// in which the data directory resides (for instance argv[0].)
// The configfile is the name of a file in the tessconfigs directory
// (eg batch) or NULL to run on defaults.
// Outputbase may also be NULL, and is the basename of various output files.
// If the output of any of these files is enabled, then a name nmust be given.
// If numeric_mode is true, only possible digits and roman numbers are
// returned. Returns 0 if successful. Crashes if not.
// The argc and argv may be 0 and NULL respectively. They are used for
// providing config files for debug/display purposes.
// TODO(rays) get the facts straight. Is it OK to call
// it more than once? Make it properly check for errors and return them.
int TessBaseAPI::Init(const char* datapath, const char* outputbase,
const char* configfile, bool numeric_mode,
int argc, char* argv[]) {
return InitWithLanguage(datapath, outputbase, NULL, configfile,
numeric_mode, argc, argv);
}
// Start tesseract.
// Similar to Init() except that it is possible to specify the language.
// Language is the code of the language for which the data will be loaded.
// (Codes follow ISO 639-2.) If it is NULL, english (eng) will be loaded.
int TessBaseAPI::InitWithLanguage(const char* datapath, const char* outputbase,
const char* language, const char* configfile,
bool numeric_mode, int argc, char* argv[]) {
int result = init_tesseract(datapath, outputbase, language,
configfile, argc, argv);
bln_numericmode.set_value(numeric_mode);
return result;
}
// Set the name of the input file. Needed only for training and
// loading a UNLV zone file.
void TessBaseAPI::SetInputName(const char* name) {
input_file = name;
}
// Recognize a rectangle from an image and return the result as a string.
// May be called many times for a single Init.
// Currently has no error checking.
// Greyscale of 8 and color of 24 or 32 bits per pixel may be given.
// Palette color images will not work properly and must be converted to
// 24 bit.
// Binary images of 1 bit per pixel may also be given but they must be
// byte packed with the MSB of the first byte being the first pixel, and a
// one pixel is WHITE. For binary images set bytes_per_pixel=0.
// The recognized text is returned as a char* which (in future will be coded
// as UTF8 and) must be freed with the delete [] operator.
char* TessBaseAPI::TesseractRect(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
int left, int top,
int width, int height) {
if (width < kMinRectSize || height < kMinRectSize)
return NULL; // Nothing worth doing.
// Copy/Threshold the image to the tesseract global page_image.
CopyImageToTesseract(imagedata, bytes_per_pixel, bytes_per_line,
left, top, width, height);
return RecognizeToString();
}
// As TesseractRect but produces a box file as output.
char* TessBaseAPI::TesseractRectBoxes(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
int left, int top,
int width, int height,
int imageheight) {
if (width < kMinRectSize || height < kMinRectSize)
return NULL; // Nothing worth doing.
// Copy/Threshold the image to the tesseract global page_image.
CopyImageToTesseract(imagedata, bytes_per_pixel, bytes_per_line,
left, top, width, height);
BLOCK_LIST block_list;
FindLines(&block_list);
// Now run the main recognition.
PAGE_RES* page_res = Recognize(&block_list, NULL);
return TesseractToBoxText(page_res, left, imageheight - (top + height));
}
char* TessBaseAPI::TesseractRectUNLV(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
int left, int top,
int width, int height) {
if (width < kMinRectSize || height < kMinRectSize)
return NULL; // Nothing worth doing.
// Copy/Threshold the image to the tesseract global page_image.
CopyImageToTesseract(imagedata, bytes_per_pixel, bytes_per_line,
left, top, width, height);
BLOCK_LIST block_list;
FindLines(&block_list);
// Now run the main recognition.
PAGE_RES* page_res = Recognize(&block_list, NULL);
return TesseractToUNLV(page_res);
}
// Call between pages or documents etc to free up memory and forget
// adaptive data.
void TessBaseAPI::ClearAdaptiveClassifier() {
ResetAdaptiveClassifier();
}
// Close down tesseract and free up memory.
void TessBaseAPI::End() {
ResetAdaptiveClassifier();
end_tesseract();
}
// Dump the internal binary image to a PGM file.
void TessBaseAPI::DumpPGM(const char* filename) {
IMAGELINE line;
line.init(page_image.get_xsize());
FILE *fp = fopen(filename, "w");
fprintf(fp, "P5 " INT32FORMAT " " INT32FORMAT " 255\n", page_image.get_xsize(),
page_image.get_ysize());
for (int j = page_image.get_ysize()-1; j >= 0 ; --j) {
page_image.get_line(0, j, page_image.get_xsize(), &line, 0);
for (int i = 0; i < page_image.get_xsize(); ++i) {
UINT8 b = line.pixels[i] ? 255 : 0;
fwrite(&b, 1, 1, fp);
}
}
fclose(fp);
}
// Copy the given image rectangle to Tesseract, with adaptive thresholding
// if the image is not already binary.
void TessBaseAPI::CopyImageToTesseract(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
int left, int top,
int width, int height) {
if (bytes_per_pixel > 0) {
// Threshold grey or color.
int* thresholds = new int[bytes_per_pixel];
int* hi_values = new int[bytes_per_pixel];
// Compute the thresholds.
OtsuThreshold(imagedata, bytes_per_pixel, bytes_per_line,
left, top, left + width, top + height,
thresholds, hi_values);
// Threshold the image to the tesseract global page_image.
ThresholdRect(imagedata, bytes_per_pixel, bytes_per_line,
left, top, width, height,
thresholds, hi_values);
delete [] thresholds;
delete [] hi_values;
} else {
CopyBinaryRect(imagedata, bytes_per_line, left, top, width, height);
}
}
// Compute the Otsu threshold(s) for the given image rectangle, making one
// for each channel. Each channel is always one byte per pixel.
// Returns an array of threshold values and an array of hi_values, such
// that a pixel value >threshold[channel] is considered foreground if
// hi_values[channel] is 0 or background if 1. A hi_value of -1 indicates
// that there is no apparent foreground. At least one hi_value will not be -1.
// thresholds and hi_values are assumed to be of bytes_per_pixel size.
void TessBaseAPI::OtsuThreshold(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
int left, int top, int right, int bottom,
int* thresholds,
int* hi_values) {
// Of all channels with no good hi_value, keep the best so we can always
// produce at least one answer.
int best_hi_value = 0;
int best_hi_index = 0;
bool any_good_hivalue = false;
double best_hi_dist = 0.0;
for (int ch = 0; ch < bytes_per_pixel; ++ch) {
thresholds[ch] = 0;
hi_values[ch] = -1;
// Compute the histogram of the image rectangle.
int histogram[256];
HistogramRect(imagedata + ch, bytes_per_pixel, bytes_per_line,
left, top, right, bottom, histogram);
int H;
int best_omega_0;
int best_t = OtsuStats(histogram, &H, &best_omega_0);
// To be a convincing foreground we must have a small fraction of H
// or to be a convincing background we must have a large fraction of H.
// In between we assume this channel contains no thresholding information.
int hi_value = best_omega_0 < H * 0.5;
thresholds[ch] = best_t;
if (best_omega_0 > H * 0.75) {
any_good_hivalue = true;
hi_values[ch] = 0;
}
else if (best_omega_0 < H * 0.25) {
any_good_hivalue = true;
hi_values[ch] = 1;
}
else {
// In case all channels are like this, keep the best of the bad lot.
double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0;
if (hi_dist > best_hi_dist) {
best_hi_dist = hi_dist;
best_hi_value = hi_value;
best_hi_index = ch;
}
}
}
if (!any_good_hivalue) {
// Use the best of the ones that were not good enough.
hi_values[best_hi_index] = best_hi_value;
}
}
// Compute the histogram for the given image rectangle, and the given
// channel. (Channel pointed to by imagedata.) Each channel is always
// one byte per pixel.
// Bytes per pixel is used to skip channels not being
// counted with this call in a multi-channel (pixel-major) image.
// Histogram is always a 256 element array to count occurrences of
// each pixel value.
void TessBaseAPI::HistogramRect(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
int left, int top, int right, int bottom,
int* histogram) {
int width = right - left;
memset(histogram, 0, sizeof(*histogram) * 256);
const unsigned char* pix = imagedata +
top*bytes_per_line +
left*bytes_per_pixel;
for (int y = top; y < bottom; ++y) {
for (int x = 0; x < width; ++x) {
++histogram[pix[x * bytes_per_pixel]];
}
pix += bytes_per_line;
}
}
// Compute the Otsu threshold(s) for the given histogram.
// Also returns H = total count in histogram, and
// omega0 = count of histogram below threshold.
int TessBaseAPI::OtsuStats(const int* histogram,
int* H_out,
int* omega0_out) {
int H = 0;
double mu_T = 0.0;
for (int i = 0; i < 256; ++i) {
H += histogram[i];
mu_T += i * histogram[i];
}
// Now maximize sig_sq_B over t.
// http://www.ctie.monash.edu.au/hargreave/Cornall_Terry_328.pdf
int best_t = -1;
int omega_0, omega_1;
int best_omega_0 = 0;
double best_sig_sq_B = 0.0;
double mu_0, mu_1, mu_t;
omega_0 = 0;
mu_t = 0.0;
for (int t = 0; t < 255; ++t) {
omega_0 += histogram[t];
mu_t += t * static_cast<double>(histogram[t]);
if (omega_0 == 0)
continue;
omega_1 = H - omega_0;
mu_0 = mu_t / omega_0;
mu_1 = (mu_T - mu_t) / omega_1;
double sig_sq_B = mu_1 - mu_0;
sig_sq_B *= sig_sq_B * omega_0 * omega_1;
if (best_t < 0 || sig_sq_B > best_sig_sq_B) {
best_sig_sq_B = sig_sq_B;
best_t = t;
best_omega_0 = omega_0;
}
}
if (H_out != NULL) *H_out = H;
if (omega0_out != NULL) *omega0_out = best_omega_0;
return best_t;
}
// Threshold the given grey or color image into the tesseract global
// image ready for recognition. Requires thresholds and hi_value
// produced by OtsuThreshold above.
void TessBaseAPI::ThresholdRect(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
int left, int top,
int width, int height,
const int* thresholds,
const int* hi_values) {
IMAGELINE line;
page_image.create(width, height, 1);
line.init(width);
// For each line in the image, fill the IMAGELINE class and put it into the
// Tesseract global page_image. Note that Tesseract stores images with the
// bottom at y=0 and 0 is black, so we need 2 kinds of inversion.
const unsigned char* data = imagedata + top*bytes_per_line +
left*bytes_per_pixel;
for (int y = height - 1 ; y >= 0; --y) {
const unsigned char* pix = data;
for (int x = 0; x < width; ++x, pix += bytes_per_pixel) {
line.pixels[x] = 1;
for (int ch = 0; ch < bytes_per_pixel; ++ch) {
if (hi_values[ch] >= 0 &&
(pix[ch] > thresholds[ch]) == (hi_values[ch] == 0)) {
line.pixels[x] = 0;
break;
}
}
}
page_image.put_line(0, y, width, &line, 0);
data += bytes_per_line;
}
}
// Cut out the requested rectangle of the binary image to the
// tesseract global image ready for recognition.
void TessBaseAPI::CopyBinaryRect(const unsigned char* imagedata,
int bytes_per_line,
int left, int top,
int width, int height) {
// Copy binary image, cutting out the required rectangle.
IMAGE image;
image.capture(const_cast<unsigned char*>(imagedata),
bytes_per_line*8, top + height, 1);
page_image.create(width, height, 1);
copy_sub_image(&image, left, 0, width, height, &page_image, 0, 0, false);
}
// Low-level function to recognize the current global image to a string.
char* TessBaseAPI::RecognizeToString() {
BLOCK_LIST block_list;
FindLines(&block_list);
// Now run the main recognition.
PAGE_RES* page_res = Recognize(&block_list, NULL);
return TesseractToText(page_res);
}
// Find lines from the image making the BLOCK_LIST.
void TessBaseAPI::FindLines(BLOCK_LIST* block_list) {
// The following call creates a full-page block and then runs connected
// component analysis and text line creation.
pgeditor_read_file(input_file, block_list);
}
// Recognize the tesseract global image and return the result as Tesseract
// internal structures.
PAGE_RES* TessBaseAPI::Recognize(BLOCK_LIST* block_list, ETEXT_DESC* monitor) {
if (tessedit_resegment_from_boxes)
apply_boxes(block_list);
if (edit_variables)
start_variables_editor();
PAGE_RES* page_res = new PAGE_RES(block_list);
if (interactive_mode) {
pgeditor_main(block_list); //pgeditor user I/F
} else if (tessedit_train_from_boxes) {
apply_box_training(block_list);
} else {
// Now run the main recognition.
recog_all_words(page_res, monitor);
}
return page_res;
}
// Return the maximum length that the output text string might occupy.
int TessBaseAPI::TextLength(PAGE_RES* page_res) {
PAGE_RES_IT page_res_it(page_res);
int total_length = 2;
// Iterate over the data structures to extract the recognition result.
for (page_res_it.restart_page(); page_res_it.word () != NULL;
page_res_it.forward()) {
WERD_RES *word = page_res_it.word();
WERD_CHOICE* choice = word->best_choice;
if (choice != NULL) {
total_length += choice->string().length() + 1;
for (int i = 0; i < word->reject_map.length(); ++i) {
if (word->reject_map[i].rejected())
++total_length;
}
}
}
return total_length;
}
// Make a text string from the internal data structures.
// The input page_res is deleted.
char* TessBaseAPI::TesseractToText(PAGE_RES* page_res) {
if (page_res != NULL) {
int total_length = TextLength(page_res);
PAGE_RES_IT page_res_it(page_res);
char* result = new char[total_length];
char* ptr = result;
for (page_res_it.restart_page(); page_res_it.word () != NULL;
page_res_it.forward()) {
WERD_RES *word = page_res_it.word();
WERD_CHOICE* choice = word->best_choice;
if (choice != NULL) {
strcpy(ptr, choice->string().string());
ptr += strlen(ptr);
if (word->word->flag(W_EOL))
*ptr++ = '\n';
else
*ptr++ = ' ';
}
}
*ptr++ = '\n';
*ptr = '\0';
delete page_res;
return result;
}
return NULL;
}
static int ConvertWordToBoxText(WERD_RES *word,
ROW_RES* row,
int left,
int bottom,
char* word_str) {
// Copy the output word and denormalize it back to image coords.
WERD copy_outword;
copy_outword = *(word->outword);
copy_outword.baseline_denormalise(&word->denorm);
PBLOB_IT blob_it;
blob_it.set_to_list(copy_outword.blob_list());
int length = copy_outword.blob_list()->length();
int output_size = 0;
if (length > 0) {
for (int index = 0, offset = 0; index < length;
offset += word->best_choice->lengths()[index++], blob_it.forward()) {
PBLOB* blob = blob_it.data();
BOX blob_box = blob->bounding_box();
if (word->tess_failed ||
blob_box.left() < 0 ||
blob_box.right() > page_image.get_xsize() ||
blob_box.bottom() < 0 ||
blob_box.top() > page_image.get_ysize()) {
// Bounding boxes can be illegal when tess fails on a word.
blob_box = word->word->bounding_box(); // Use original word as backup.
tprintf("Using substitute bounding box at (%d,%d)->(%d,%d)\n",
blob_box.left(), blob_box.bottom(),
blob_box.right(), blob_box.top());
}
// A single classification unit can be composed of several UTF-8
// characters. Append each of them to the result.
for (int sub = 0; sub < word->best_choice->lengths()[index]; ++sub) {
char ch = word->best_choice->string()[offset + sub];
// Tesseract uses space for recognition failure. Fix to a reject
// character, '~' so we don't create illegal box files.
if (ch == ' ')
ch = '~';
word_str[output_size++] = ch;
}
sprintf(word_str + output_size, " %d %d %d %d\n",
blob_box.left() + left, blob_box.bottom() + bottom,
blob_box.right() + left, blob_box.top() + bottom);
output_size += strlen(word_str + output_size);
}
}
return output_size;
}
// Multiplier for textlength assumes 4 numbers @ 5 digits and a space
// plus the newline and the orginial character = 4*(5+1)+2
const int kMaxCharsPerChar = 26;
// Make a text string from the internal data structures.
// The input page_res is deleted.
// The text string takes the form of a box file as needed for training.
char* TessBaseAPI::TesseractToBoxText(PAGE_RES* page_res,
int left, int bottom) {
if (page_res != NULL) {
int total_length = TextLength(page_res) * kMaxCharsPerChar;
PAGE_RES_IT page_res_it(page_res);
char* result = new char[total_length];
char* ptr = result;
for (page_res_it.restart_page(); page_res_it.word () != NULL;
page_res_it.forward()) {
WERD_RES *word = page_res_it.word();
ptr += ConvertWordToBoxText(word,page_res_it.row(),left, bottom, ptr);
}
*ptr = '\0';
delete page_res;
return result;
}
return NULL;
}
// Make a text string from the internal data structures.
// The input page_res is deleted. The text string is converted
// to UNLV-format: Latin-1 with specific reject and suspect codes.
const char kUnrecognized = '~';
// Conversion table for non-latin characters.
// Maps characters out of the latin set into the latin set.
// TODO(rays) incorporate this translation into unicharset.
const int kUniChs[] = {
0x20ac, 0x201c, 0x201d, 0x2018, 0x2019, 0x2022, 0x2014, 0
};
// Latin chars corresponding to the unicode chars above.
const int kLatinChs[] = {
0x00a2, 0x0022, 0x0022, 0x0027, 0x0027, 0x00b7, 0x002d, 0
};
char* TessBaseAPI::TesseractToUNLV(PAGE_RES* page_res) {
bool tilde_crunch_written = false;
bool last_char_was_newline = true;
bool last_char_was_tilde = false;
if (page_res != NULL) {
int total_length = TextLength(page_res);
PAGE_RES_IT page_res_it(page_res);
char* result = new char[total_length];
char* ptr = result;
for (page_res_it.restart_page(); page_res_it.word () != NULL;
page_res_it.forward()) {
WERD_RES *word = page_res_it.word();
// Process the current word.
if (word->unlv_crunch_mode != CR_NONE) {
if (word->unlv_crunch_mode != CR_DELETE &&
(!tilde_crunch_written ||
(word->unlv_crunch_mode == CR_KEEP_SPACE &&
word->word->space () > 0 &&
!word->word->flag (W_FUZZY_NON) &&
!word->word->flag (W_FUZZY_SP)))) {
if (!word->word->flag (W_BOL) &&
word->word->space () > 0 &&
!word->word->flag (W_FUZZY_NON) &&
!word->word->flag (W_FUZZY_SP)) {
/* Write a space to separate from preceeding good text */
*ptr++ = ' ';
last_char_was_tilde = false;
}
if (!last_char_was_tilde) {
// Write a reject char.
last_char_was_tilde = true;
*ptr++ = kUnrecognized;
tilde_crunch_written = true;
last_char_was_newline = false;
}
}
} else {
// NORMAL PROCESSING of non tilde crunched words.
tilde_crunch_written = false;
if (last_char_was_tilde &&
word->word->space () == 0 &&
(word->best_choice->string ()[0] == ' ')) {
/* Prevent adjacent tilde across words - we know that adjacent tildes within
words have been removed */
char* p = (char *) word->best_choice->string().string ();
strcpy (p, p + 1); //shuffle up
p = (char *) word->best_choice->lengths().string ();
strcpy (p, p + 1); //shuffle up
word->reject_map.remove_pos (0);
PBLOB_IT blob_it = word->outword->blob_list ();
delete blob_it.extract (); //get rid of reject blob
}
if (word->word->flag(W_REP_CHAR) && tessedit_consistent_reps)
ensure_rep_chars_are_consistent(word);
set_unlv_suspects(word);
const char* wordstr = word->best_choice->string().string();
if (wordstr[0] != 0) {
if (!last_char_was_newline)
*ptr++ = ' ';
else
last_char_was_newline = false;
int offset = 0;
const STRING& lengths = word->best_choice->lengths();
int length = lengths.length();
for (int i = 0; i < length; offset += lengths[i++]) {
if (wordstr[offset] == ' ' ||
wordstr[offset] == '~' ||
wordstr[offset] == '|') {
*ptr++ = kUnrecognized;
last_char_was_tilde = true;
} else {
if (word->reject_map[i].rejected())
*ptr++ = '^';
UNICHAR ch(wordstr + offset, lengths[i]);
int uni_ch = ch.first_uni();
for (int j = 0; kUniChs[j] != 0; ++j) {
if (kUniChs[j] == uni_ch) {
uni_ch = kLatinChs[j];
break;
}
}
if (uni_ch <= 0xff) {
*ptr++ = static_cast<char>(uni_ch);
last_char_was_tilde = false;
} else {
*ptr++ = kUnrecognized;
last_char_was_tilde = true;
}
}
}
}
}
if (word->word->flag(W_EOL) && !last_char_was_newline) {
/* Add a new line output */
*ptr++ = '\n';
tilde_crunch_written = false;
last_char_was_newline = true;
last_char_was_tilde = false;
}
}
*ptr++ = '\n';
*ptr = '\0';
delete page_res;
return result;
}
return NULL;
}