mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2025-01-19 06:53:36 +08:00
Merge pull request #2416 from noahmetzger/4.1
Readded parts of the lstm_choice_mode functionality
This commit is contained in:
commit
0963daad19
@ -133,7 +133,7 @@ char* TessBaseAPI::GetHOCRText(ETEXT_DESC* monitor, int page_number) {
|
||||
if (tesseract_ == nullptr || (page_res_ == nullptr && Recognize(monitor) < 0))
|
||||
return nullptr;
|
||||
|
||||
int lcnt = 1, bcnt = 1, pcnt = 1, wcnt = 1, scnt = 1, gcnt = 1;
|
||||
int lcnt = 1, bcnt = 1, pcnt = 1, wcnt = 1, scnt = 1, tcnt = 1, gcnt = 1;
|
||||
int page_id = page_number + 1; // hOCR uses 1-based page numbers.
|
||||
bool para_is_ltr = true; // Default direction is LTR
|
||||
const char* paragraph_lang = nullptr;
|
||||
@ -216,6 +216,12 @@ char* TessBaseAPI::GetHOCRText(ETEXT_DESC* monitor, int page_number) {
|
||||
}
|
||||
|
||||
// Now, process the word...
|
||||
std::vector<std::vector<std::pair<const char*, float>>>* choiceMap =
|
||||
nullptr;
|
||||
if (tesseract_->lstm_choice_mode) {
|
||||
|
||||
choiceMap = res_it->GetBestLSTMSymbolChoices();
|
||||
}
|
||||
hocr_str << "\n <span class='ocrx_word'"
|
||||
<< " id='"
|
||||
<< "word_" << page_id << "_" << wcnt << "'";
|
||||
@ -278,8 +284,48 @@ char* TessBaseAPI::GetHOCRText(ETEXT_DESC* monitor, int page_number) {
|
||||
res_it->Next(RIL_SYMBOL);
|
||||
} while (!res_it->Empty(RIL_BLOCK) && !res_it->IsAtBeginningOf(RIL_WORD));
|
||||
if (italic) hocr_str << "</em>";
|
||||
if (bold) hocr_str << "</strong>";
|
||||
if (bold) hocr_str << "</strong>";
|
||||
// If the lstm choice mode is required it is added here
|
||||
if (tesseract_->lstm_choice_mode == 1 && choiceMap != nullptr) {
|
||||
for (auto timestep : *choiceMap) {
|
||||
hocr_str << "\n <span class='ocrx_cinfo'"
|
||||
<< " id='"
|
||||
<< "timestep_" << page_id << "_" << wcnt << "_" << tcnt << "'"
|
||||
<< ">";
|
||||
for (std::pair<const char*, float> conf : timestep) {
|
||||
hocr_str << "<span class='ocr_glyph'"
|
||||
<< " id='"
|
||||
<< "choice_" << page_id << "_" << wcnt << "_" << gcnt << "'"
|
||||
<< " title='x_confs " << int(conf.second * 100) << "'>"
|
||||
<< conf.first << "</span>";
|
||||
gcnt++;
|
||||
}
|
||||
hocr_str << "</span>";
|
||||
tcnt++;
|
||||
}
|
||||
} else if (tesseract_->lstm_choice_mode == 2 && choiceMap != nullptr) {
|
||||
for (auto timestep : *choiceMap) {
|
||||
if (timestep.size() > 0) {
|
||||
hocr_str << "\n <span class='ocrx_cinfo'"
|
||||
<< " id='"
|
||||
<< "lstm_choices_" << page_id << "_" << wcnt << "_" << tcnt
|
||||
<< "'>";
|
||||
for (auto & j : timestep) {
|
||||
hocr_str << "<span class='ocr_glyph'"
|
||||
<< " id='"
|
||||
<< "choice_" << page_id << "_" << wcnt << "_" << gcnt
|
||||
<< "'"
|
||||
<< " title='x_confs " << int(j.second * 100)
|
||||
<< "'>" << j.first << "</span>";
|
||||
gcnt++;
|
||||
}
|
||||
hocr_str << "</span>";
|
||||
tcnt++;
|
||||
}
|
||||
}
|
||||
}
|
||||
hocr_str << "</span>";
|
||||
tcnt = 1;
|
||||
gcnt = 1;
|
||||
wcnt++;
|
||||
// Close any ending block/paragraph/textline.
|
||||
|
@ -239,7 +239,7 @@ void Tesseract::LSTMRecognizeWord(const BLOCK& block, ROW *row, WERD_RES *word,
|
||||
if (im_data == nullptr) return;
|
||||
lstm_recognizer_->RecognizeLine(*im_data, true, classify_debug_level > 0,
|
||||
kWorstDictCertainty / kCertaintyScale,
|
||||
word_box, words);
|
||||
word_box, words, lstm_choice_mode);
|
||||
delete im_data;
|
||||
SearchWords(words);
|
||||
}
|
||||
|
@ -216,12 +216,6 @@ class ChoiceIterator {
|
||||
// probabilities won't add up to 100. Each one stands on its own.
|
||||
float Confidence() const;
|
||||
|
||||
// Returns a vector containing all timesteps, which belong to the currently
|
||||
// selected symbol. A timestep is a vector containing pairs of symbols and
|
||||
// floating point numbers. The number states the probability for the
|
||||
// corresponding symbol.
|
||||
std::vector<std::vector<std::pair<const char*, float>>>* Timesteps() const;
|
||||
|
||||
private:
|
||||
// Pointer to the WERD_RES object owned by the API.
|
||||
WERD_RES* word_res_;
|
||||
|
@ -27,6 +27,8 @@
|
||||
#include "tesseractclass.h"
|
||||
#include "unicharset.h"
|
||||
#include "unicodes.h"
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
namespace tesseract {
|
||||
|
||||
@ -603,6 +605,15 @@ char* ResultIterator::GetUTF8Text(PageIteratorLevel level) const {
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::pair<const char*, float>>>*
|
||||
ResultIterator::GetBestLSTMSymbolChoices() const {
|
||||
if (it_->word() != nullptr) {
|
||||
return &it_->word()->timesteps;
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
void ResultIterator::AppendUTF8WordText(STRING *text) const {
|
||||
if (!it_->word()) return;
|
||||
ASSERT_HOST(it_->word()->best_choice != nullptr);
|
||||
|
@ -22,6 +22,8 @@
|
||||
#ifndef TESSERACT_CCMAIN_RESULT_ITERATOR_H_
|
||||
#define TESSERACT_CCMAIN_RESULT_ITERATOR_H_
|
||||
|
||||
#include <set> // for std::pair
|
||||
#include <vector> // for std::vector
|
||||
#include "ltrresultiterator.h" // for LTRResultIterator
|
||||
#include "platform.h" // for TESS_API, TESS_LOCAL
|
||||
#include "publictypes.h" // for PageIteratorLevel
|
||||
@ -95,6 +97,12 @@ class TESS_API ResultIterator : public LTRResultIterator {
|
||||
*/
|
||||
virtual char* GetUTF8Text(PageIteratorLevel level) const;
|
||||
|
||||
/**
|
||||
* Returns the LSTM choices for every LSTM timestep for the current word.
|
||||
*/
|
||||
virtual std::vector<std::vector<std::pair<const char*, float>>>*
|
||||
GetBestLSTMSymbolChoices() const;
|
||||
|
||||
/**
|
||||
* Return whether the current paragraph's dominant reading direction
|
||||
* is left-to-right (as opposed to right-to-left).
|
||||
|
@ -521,6 +521,13 @@ Tesseract::Tesseract()
|
||||
STRING_MEMBER(page_separator, "\f",
|
||||
"Page separator (default is form feed control character)",
|
||||
this->params()),
|
||||
INT_MEMBER(lstm_choice_mode, 0,
|
||||
"Allows to include alternative symbols choices in the hOCR output. "
|
||||
"Valid input values are 0, 1, 2 and 3. 0 is the default value. "
|
||||
"With 1 the alternative symbol choices per timestep are included. "
|
||||
"With 2 the alternative symbol choices are accumulated per "
|
||||
"character. ",
|
||||
this->params()),
|
||||
|
||||
backup_config_file_(nullptr),
|
||||
pix_binary_(nullptr),
|
||||
|
@ -1085,6 +1085,13 @@ class Tesseract : public Wordrec {
|
||||
"Preserve multiple interword spaces");
|
||||
STRING_VAR_H(page_separator, "\f",
|
||||
"Page separator (default is form feed control character)");
|
||||
INT_VAR_H(lstm_choice_mode, 0,
|
||||
"Allows to include alternative symbols choices in the hOCR "
|
||||
"output. "
|
||||
"Valid input values are 0, 1, 2 and 3. 0 is the default value. "
|
||||
"With 1 the alternative symbol choices per timestep are included. "
|
||||
"With 2 the alternative symbol choices are accumulated per "
|
||||
"character. ");
|
||||
|
||||
//// ambigsrecog.cpp /////////////////////////////////////////////////////////
|
||||
FILE* init_recog_training(const STRING& fname);
|
||||
|
@ -20,6 +20,8 @@
|
||||
#define PAGERES_H
|
||||
|
||||
#include <cstdint> // for int32_t, int16_t
|
||||
#include <set> // for std::pair
|
||||
#include <vector> // for std::vector
|
||||
#include <sys/types.h> // for int8_t
|
||||
#include "blamer.h" // for BlamerBundle (ptr only), IRR_NUM_REASONS
|
||||
#include "clst.h" // for CLIST_ITERATOR, CLISTIZEH
|
||||
@ -217,6 +219,8 @@ class WERD_RES : public ELIST_LINK {
|
||||
// Gaps between blobs in chopped_word. blob_gaps[i] is the gap between
|
||||
// blob i and blob i+1.
|
||||
GenericVector<int> blob_gaps;
|
||||
// Stores the lstm choices of every timestep
|
||||
std::vector<std::vector<std::pair<const char*, float>>> timesteps;
|
||||
// Ratings matrix contains classifier choices for each classified combination
|
||||
// of blobs. The dimension is the same as the number of blobs in chopped_word
|
||||
// and the leading diagonal corresponds to classifier results of the blobs
|
||||
|
@ -179,7 +179,8 @@ bool LSTMRecognizer::LoadDictionary(const ParamsVectors* params,
|
||||
void LSTMRecognizer::RecognizeLine(const ImageData& image_data, bool invert,
|
||||
bool debug, double worst_dict_cert,
|
||||
const TBOX& line_box,
|
||||
PointerVector<WERD_RES>* words) {
|
||||
PointerVector<WERD_RES>* words,
|
||||
int lstm_choice_mode) {
|
||||
NetworkIO outputs;
|
||||
float scale_factor;
|
||||
NetworkIO inputs;
|
||||
@ -191,9 +192,9 @@ void LSTMRecognizer::RecognizeLine(const ImageData& image_data, bool invert,
|
||||
new RecodeBeamSearch(recoder_, null_char_, SimpleTextOutput(), dict_);
|
||||
}
|
||||
search_->Decode(outputs, kDictRatio, kCertOffset, worst_dict_cert,
|
||||
&GetUnicharset());
|
||||
&GetUnicharset(), lstm_choice_mode);
|
||||
search_->ExtractBestPathAsWords(line_box, scale_factor, debug,
|
||||
&GetUnicharset(), words);
|
||||
&GetUnicharset(), words, lstm_choice_mode);
|
||||
}
|
||||
|
||||
// Helper computes min and mean best results in the output.
|
||||
|
@ -175,7 +175,7 @@ class LSTMRecognizer {
|
||||
// will be used in a dictionary word.
|
||||
void RecognizeLine(const ImageData& image_data, bool invert, bool debug,
|
||||
double worst_dict_cert, const TBOX& line_box,
|
||||
PointerVector<WERD_RES>* words);
|
||||
PointerVector<WERD_RES>* words, int lstm_choice_mode = 0);
|
||||
|
||||
// Helper computes min and mean best results in the output.
|
||||
void OutputStats(const NetworkIO& outputs, float* min_output,
|
||||
|
@ -21,6 +21,12 @@
|
||||
#include "networkio.h"
|
||||
#include "pageres.h"
|
||||
#include "unicharcompress.h"
|
||||
#include <deque>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
namespace tesseract {
|
||||
@ -75,13 +81,18 @@ RecodeBeamSearch::RecodeBeamSearch(const UnicharCompress& recoder,
|
||||
// Decodes the set of network outputs, storing the lattice internally.
|
||||
void RecodeBeamSearch::Decode(const NetworkIO& output, double dict_ratio,
|
||||
double cert_offset, double worst_dict_cert,
|
||||
const UNICHARSET* charset) {
|
||||
const UNICHARSET* charset, int lstm_choice_mode) {
|
||||
beam_size_ = 0;
|
||||
int width = output.Width();
|
||||
if (lstm_choice_mode)
|
||||
timesteps.clear();
|
||||
for (int t = 0; t < width; ++t) {
|
||||
ComputeTopN(output.f(t), output.NumFeatures(), kBeamWidths[0]);
|
||||
DecodeStep(output.f(t), t, dict_ratio, cert_offset, worst_dict_cert,
|
||||
charset);
|
||||
if (lstm_choice_mode) {
|
||||
SaveMostCertainChoices(output.f(t), output.NumFeatures(), charset, t);
|
||||
}
|
||||
}
|
||||
}
|
||||
void RecodeBeamSearch::Decode(const GENERIC_2D_ARRAY<float>& output,
|
||||
@ -96,6 +107,34 @@ void RecodeBeamSearch::Decode(const GENERIC_2D_ARRAY<float>& output,
|
||||
}
|
||||
}
|
||||
|
||||
void RecodeBeamSearch::SaveMostCertainChoices(const float* outputs,
|
||||
int num_outputs,
|
||||
const UNICHARSET* charset,
|
||||
int xCoord) {
|
||||
std::vector<std::pair<const char*, float>> choices;
|
||||
for (int i = 0; i < num_outputs; ++i) {
|
||||
if (outputs[i] >= 0.01f) {
|
||||
const char* character;
|
||||
if (i + 2 >= num_outputs) {
|
||||
character = "";
|
||||
} else if (i > 0) {
|
||||
character = charset->id_to_unichar_ext(i + 2);
|
||||
} else {
|
||||
character = charset->id_to_unichar_ext(i);
|
||||
}
|
||||
size_t pos = 0;
|
||||
//order the possible choices within one timestep
|
||||
//beginning with the most likely
|
||||
while (choices.size() > pos && choices[pos].second > outputs[i]) {
|
||||
pos++;
|
||||
}
|
||||
choices.insert(choices.begin() + pos,
|
||||
std::pair<const char*, float>(character, outputs[i]));
|
||||
}
|
||||
}
|
||||
timesteps.push_back(choices);
|
||||
}
|
||||
|
||||
// Returns the best path as labels/scores/xcoords similar to simple CTC.
|
||||
void RecodeBeamSearch::ExtractBestPathAsLabels(
|
||||
GenericVector<int>* labels, GenericVector<int>* xcoords) const {
|
||||
@ -138,7 +177,8 @@ void RecodeBeamSearch::ExtractBestPathAsUnicharIds(
|
||||
void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
|
||||
float scale_factor, bool debug,
|
||||
const UNICHARSET* unicharset,
|
||||
PointerVector<WERD_RES>* words) {
|
||||
PointerVector<WERD_RES>* words,
|
||||
int lstm_choice_mode) {
|
||||
words->truncate(0);
|
||||
GenericVector<int> unichar_ids;
|
||||
GenericVector<float> certs;
|
||||
@ -146,6 +186,7 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
|
||||
GenericVector<int> xcoords;
|
||||
GenericVector<const RecodeNode*> best_nodes;
|
||||
GenericVector<const RecodeNode*> second_nodes;
|
||||
std::deque<std::tuple<int, int>> best_choices;
|
||||
ExtractBestPaths(&best_nodes, &second_nodes);
|
||||
if (debug) {
|
||||
DebugPath(unicharset, best_nodes);
|
||||
@ -155,10 +196,20 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
|
||||
DebugUnicharPath(unicharset, second_nodes, unichar_ids, certs, ratings,
|
||||
xcoords);
|
||||
}
|
||||
int timestepEnd= 0;
|
||||
//if lstm choice mode is required in granularity level 2 it stores the x
|
||||
//Coordinates of every chosen character to match the alternative choices to it
|
||||
ExtractPathAsUnicharIds(best_nodes, &unichar_ids, &certs, &ratings,
|
||||
&xcoords);
|
||||
if (lstm_choice_mode == 2) {
|
||||
ExtractPathAsUnicharIds(best_nodes, &unichar_ids, &certs, &ratings,
|
||||
&xcoords, &best_choices);
|
||||
if (best_choices.size() > 0) {
|
||||
timestepEnd = std::get<1>(best_choices.front());
|
||||
best_choices.pop_front();
|
||||
}
|
||||
} else {
|
||||
ExtractPathAsUnicharIds(best_nodes, &unichar_ids, &certs, &ratings,
|
||||
&xcoords);
|
||||
}
|
||||
int num_ids = unichar_ids.size();
|
||||
if (debug) {
|
||||
DebugUnicharPath(unicharset, best_nodes, unichar_ids, certs, ratings,
|
||||
@ -189,6 +240,51 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
|
||||
WERD_RES* word_res = InitializeWord(
|
||||
leading_space, line_box, word_start, word_end,
|
||||
std::min(space_cert, prev_space_cert), unicharset, xcoords, scale_factor);
|
||||
if (lstm_choice_mode == 1) {
|
||||
for (size_t i = timestepEnd; i < xcoords[word_end]; i++) {
|
||||
word_res->timesteps.push_back(timesteps[i]);
|
||||
}
|
||||
timestepEnd = xcoords[word_end];
|
||||
} else if (lstm_choice_mode == 2){
|
||||
// Accumulated Timesteps (choice mode 2 processing)
|
||||
float sum = 0;
|
||||
std::vector<std::pair<const char*, float>> choice_pairs;
|
||||
for (size_t i = timestepEnd; i < xcoords[word_end]; i++) {
|
||||
for (std::pair<const char*, float> choice : timesteps[i]) {
|
||||
if (std::strcmp(choice.first, "")) {
|
||||
sum += choice.second;
|
||||
choice_pairs.push_back(choice);
|
||||
}
|
||||
}
|
||||
if ((best_choices.size() > 0 && i == std::get<1>(best_choices.front()) - 1)
|
||||
|| i == xcoords[word_end]-1) {
|
||||
std::map<const char*, float> summed_propabilities;
|
||||
for (auto & choice_pair : choice_pairs) {
|
||||
summed_propabilities[choice_pair.first] += choice_pair.second;
|
||||
}
|
||||
std::vector<std::pair<const char*, float>> accumulated_timestep;
|
||||
for (auto& summed_propability : summed_propabilities) {
|
||||
if(sum == 0) break;
|
||||
summed_propability.second/=sum;
|
||||
size_t pos = 0;
|
||||
while (accumulated_timestep.size() > pos
|
||||
&& accumulated_timestep[pos].second > summed_propability.second) {
|
||||
pos++;
|
||||
}
|
||||
accumulated_timestep.insert(accumulated_timestep.begin() + pos,
|
||||
std::pair<const char*,float>(summed_propability.first,
|
||||
summed_propability.second));
|
||||
}
|
||||
if (best_choices.size() > 0) {
|
||||
best_choices.pop_front();
|
||||
}
|
||||
choice_pairs.clear();
|
||||
word_res->timesteps.push_back(accumulated_timestep);
|
||||
sum = 0;
|
||||
}
|
||||
}
|
||||
timestepEnd = xcoords[word_end];
|
||||
}
|
||||
for (int i = word_start; i < word_end; ++i) {
|
||||
auto* choices = new BLOB_CHOICE_LIST;
|
||||
BLOB_CHOICE_IT bc_it(choices);
|
||||
@ -261,7 +357,8 @@ void RecodeBeamSearch::DebugBeamPos(const UNICHARSET& unicharset,
|
||||
void RecodeBeamSearch::ExtractPathAsUnicharIds(
|
||||
const GenericVector<const RecodeNode*>& best_nodes,
|
||||
GenericVector<int>* unichar_ids, GenericVector<float>* certs,
|
||||
GenericVector<float>* ratings, GenericVector<int>* xcoords) {
|
||||
GenericVector<float>* ratings, GenericVector<int>* xcoords,
|
||||
std::deque<std::tuple<int, int>>* best_choices) {
|
||||
unichar_ids->truncate(0);
|
||||
certs->truncate(0);
|
||||
ratings->truncate(0);
|
||||
@ -292,6 +389,10 @@ void RecodeBeamSearch::ExtractPathAsUnicharIds(
|
||||
}
|
||||
unichar_ids->push_back(unichar_id);
|
||||
xcoords->push_back(t);
|
||||
if (best_choices != nullptr) {
|
||||
tposition = t;
|
||||
id = unichar_id;
|
||||
}
|
||||
do {
|
||||
double cert = best_nodes[t++]->certainty;
|
||||
// Special-case NO-PERM space to forget the certainty of the previous
|
||||
@ -308,6 +409,10 @@ void RecodeBeamSearch::ExtractPathAsUnicharIds(
|
||||
if (certainty < certs->back()) certs->back() = certainty;
|
||||
ratings->back() += rating;
|
||||
}
|
||||
if (best_choices != nullptr) {
|
||||
best_choices->push_back(
|
||||
std::tuple<int, int>(id, tposition));
|
||||
}
|
||||
}
|
||||
xcoords->push_back(width);
|
||||
}
|
||||
|
@ -27,6 +27,10 @@
|
||||
#include "networkio.h"
|
||||
#include "ratngs.h"
|
||||
#include "unicharcompress.h"
|
||||
#include <deque>
|
||||
#include <set>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
namespace tesseract {
|
||||
|
||||
@ -181,7 +185,8 @@ class RecodeBeamSearch {
|
||||
// Decodes the set of network outputs, storing the lattice internally.
|
||||
// If charset is not null, it enables detailed debugging of the beam search.
|
||||
void Decode(const NetworkIO& output, double dict_ratio, double cert_offset,
|
||||
double worst_dict_cert, const UNICHARSET* charset);
|
||||
double worst_dict_cert, const UNICHARSET* charset,
|
||||
int lstm_choice_mode = 0);
|
||||
void Decode(const GENERIC_2D_ARRAY<float>& output, double dict_ratio,
|
||||
double cert_offset, double worst_dict_cert,
|
||||
const UNICHARSET* charset);
|
||||
@ -200,11 +205,16 @@ class RecodeBeamSearch {
|
||||
// Returns the best path as a set of WERD_RES.
|
||||
void ExtractBestPathAsWords(const TBOX& line_box, float scale_factor,
|
||||
bool debug, const UNICHARSET* unicharset,
|
||||
PointerVector<WERD_RES>* words);
|
||||
PointerVector<WERD_RES>* words,
|
||||
int lstm_choice_mode = 0);
|
||||
|
||||
// Generates debug output of the content of the beams after a Decode.
|
||||
void DebugBeams(const UNICHARSET& unicharset) const;
|
||||
|
||||
// Stores the alternative characters of every timestep together with their
|
||||
// probability.
|
||||
std::vector< std::vector<std::pair<const char*, float>>> timesteps;
|
||||
|
||||
// Clipping value for certainty inside Tesseract. Reflects the minimum value
|
||||
// of certainty that will be returned by ExtractBestPathAsUnicharIds.
|
||||
// Supposedly on a uniform scale that can be compared across languages and
|
||||
@ -271,7 +281,8 @@ class RecodeBeamSearch {
|
||||
static void ExtractPathAsUnicharIds(
|
||||
const GenericVector<const RecodeNode*>& best_nodes,
|
||||
GenericVector<int>* unichar_ids, GenericVector<float>* certs,
|
||||
GenericVector<float>* ratings, GenericVector<int>* xcoords);
|
||||
GenericVector<float>* ratings, GenericVector<int>* xcoords,
|
||||
std::deque<std::tuple<int, int>>* best_choices = nullptr);
|
||||
|
||||
// Sets up a word with the ratings matrix and fake blobs with boxes in the
|
||||
// right places.
|
||||
@ -292,6 +303,9 @@ class RecodeBeamSearch {
|
||||
double cert_offset, double worst_dict_cert,
|
||||
const UNICHARSET* charset, bool debug = false);
|
||||
|
||||
//Saves the most certain choices for the current time-step
|
||||
void SaveMostCertainChoices(const float* outputs, int num_outputs, const UNICHARSET* charset, int xCoord);
|
||||
|
||||
// Adds to the appropriate beams the legal (according to recoder)
|
||||
// continuations of context prev, which is from the given index to beams_,
|
||||
// using the given network outputs to provide scores to the choices. Uses only
|
||||
|
Loading…
Reference in New Issue
Block a user