mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-27 20:59:36 +08:00
Add configurable variables to control thresholding (#3577)
This commit is contained in:
parent
c4ad9b7bbf
commit
0cb9c40528
@ -2072,7 +2072,7 @@ bool TessBaseAPI::Threshold(Pix **pix) {
|
|||||||
tesseract_->set_pix_grey(nullptr);
|
tesseract_->set_pix_grey(nullptr);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
auto [ok, pix_grey, pix_binary, pix_thresholds] = thresholder_->Threshold(thresholding_method);
|
auto [ok, pix_grey, pix_binary, pix_thresholds] = thresholder_->Threshold(this, thresholding_method);
|
||||||
|
|
||||||
if (!ok) {
|
if (!ok) {
|
||||||
return false;
|
return false;
|
||||||
|
@ -76,8 +76,34 @@ Tesseract::Tesseract()
|
|||||||
this->params())
|
this->params())
|
||||||
, INT_MEMBER(thresholding_method,
|
, INT_MEMBER(thresholding_method,
|
||||||
static_cast<int>(tesseract::ThresholdMethod::Otsu),
|
static_cast<int>(tesseract::ThresholdMethod::Otsu),
|
||||||
"Thresholding "
|
"Thresholding method: 0 = Otsu, 1 = Adaptive Otsu, 2 = "
|
||||||
"method: 0 = Otsu, 1 = Adaptive Otsu, 2 = Sauvola",
|
"Sauvola",
|
||||||
|
this->params())
|
||||||
|
, INT_MEMBER(thresholding_window_size, 51,
|
||||||
|
"Window size for measuring local statistics. "
|
||||||
|
"This parameter is used by the Sauvola thresolding method",
|
||||||
|
this->params())
|
||||||
|
, double_MEMBER(thresholding_kfactor, 0.34,
|
||||||
|
"Factor for reducing threshold due to variance. "
|
||||||
|
"This parameter is used by the Sauvola thresolding method. "
|
||||||
|
"Must be >= 0",
|
||||||
|
this->params())
|
||||||
|
, INT_MEMBER(thresholding_tile_size, 300,
|
||||||
|
"Desired tile size. Actual size may vary. Must be >= 16. "
|
||||||
|
"This parameter is used by the Adaptive Otsu thresolding "
|
||||||
|
"method",
|
||||||
|
this->params())
|
||||||
|
, INT_MEMBER(thresholding_smooth_size, 0,
|
||||||
|
"Size of convolution kernel applied to threshold array. "
|
||||||
|
"This parameter is used by the Adaptive Otsu thresolding "
|
||||||
|
"method. "
|
||||||
|
"Use 0 for no smoothing",
|
||||||
|
this->params())
|
||||||
|
, double_MEMBER(thresholding_score_fraction, 0.1,
|
||||||
|
"Fraction of the max Otsu score. "
|
||||||
|
"This parameter is used by the Adaptive Otsu thresolding "
|
||||||
|
"method. "
|
||||||
|
"Typically 0.1. Use 0.0 for standard Otsu",
|
||||||
this->params())
|
this->params())
|
||||||
, INT_INIT_MEMBER(tessedit_ocr_engine_mode, tesseract::OEM_DEFAULT,
|
, INT_INIT_MEMBER(tessedit_ocr_engine_mode, tesseract::OEM_DEFAULT,
|
||||||
"Which OCR engine(s) to run (Tesseract, LSTM, both)."
|
"Which OCR engine(s) to run (Tesseract, LSTM, both)."
|
||||||
|
@ -757,6 +757,11 @@ public:
|
|||||||
BOOL_VAR_H(tessedit_do_invert);
|
BOOL_VAR_H(tessedit_do_invert);
|
||||||
INT_VAR_H(tessedit_pageseg_mode);
|
INT_VAR_H(tessedit_pageseg_mode);
|
||||||
INT_VAR_H(thresholding_method);
|
INT_VAR_H(thresholding_method);
|
||||||
|
INT_VAR_H(thresholding_window_size);
|
||||||
|
double_VAR_H(thresholding_kfactor);
|
||||||
|
INT_VAR_H(thresholding_tile_size);
|
||||||
|
INT_VAR_H(thresholding_smooth_size);
|
||||||
|
double_VAR_H(thresholding_score_fraction);
|
||||||
INT_VAR_H(tessedit_ocr_engine_mode);
|
INT_VAR_H(tessedit_ocr_engine_mode);
|
||||||
STRING_VAR_H(tessedit_char_blacklist);
|
STRING_VAR_H(tessedit_char_blacklist);
|
||||||
STRING_VAR_H(tessedit_char_whitelist);
|
STRING_VAR_H(tessedit_char_whitelist);
|
||||||
|
@ -25,6 +25,7 @@
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
#include <allheaders.h>
|
#include <allheaders.h>
|
||||||
|
#include <tesseract/baseapi.h> // for api->GetIntVariable()
|
||||||
|
|
||||||
#include <cstdint> // for uint32_t
|
#include <cstdint> // for uint32_t
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
@ -186,6 +187,7 @@ void ImageThresholder::SetImage(const Image pix) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
std::tuple<bool, Image, Image, Image> ImageThresholder::Threshold(
|
std::tuple<bool, Image, Image, Image> ImageThresholder::Threshold(
|
||||||
|
TessBaseAPI *api,
|
||||||
ThresholdMethod method) {
|
ThresholdMethod method) {
|
||||||
Image pix_binary = nullptr;
|
Image pix_binary = nullptr;
|
||||||
Image pix_thresholds = nullptr;
|
Image pix_thresholds = nullptr;
|
||||||
@ -203,9 +205,10 @@ std::tuple<bool, Image, Image, Image> ImageThresholder::Threshold(
|
|||||||
|
|
||||||
int r;
|
int r;
|
||||||
if (method == ThresholdMethod::Sauvola) {
|
if (method == ThresholdMethod::Sauvola) {
|
||||||
// TODO: Convert this constant to config var
|
bool b;
|
||||||
// window half-width for measuring local statistics
|
int window_size;
|
||||||
constexpr l_int32 whsize = 25;
|
b = api->GetIntVariable("thresholding_window_size", &window_size);
|
||||||
|
int half_window_size = window_size / 2;
|
||||||
// factor for image division into tiles; >= 1
|
// factor for image division into tiles; >= 1
|
||||||
l_int32 nx, ny;
|
l_int32 nx, ny;
|
||||||
// // tiles size will be approx. 250 x 250 pixels
|
// // tiles size will be approx. 250 x 250 pixels
|
||||||
@ -215,19 +218,32 @@ std::tuple<bool, Image, Image, Image> ImageThresholder::Threshold(
|
|||||||
ny = std::max(1, (pix_h + 125) / 250);
|
ny = std::max(1, (pix_h + 125) / 250);
|
||||||
auto xrat = pix_w / nx;
|
auto xrat = pix_w / nx;
|
||||||
auto yrat = pix_h / ny;
|
auto yrat = pix_h / ny;
|
||||||
if (xrat < whsize + 2) {
|
if (xrat < half_window_size + 2) {
|
||||||
nx = pix_w / (whsize + 2);
|
nx = pix_w / (half_window_size + 2);
|
||||||
}
|
}
|
||||||
if (yrat < whsize + 2) {
|
if (yrat < half_window_size + 2) {
|
||||||
ny = pix_h / (whsize + 2);
|
ny = pix_h / (half_window_size + 2);
|
||||||
}
|
}
|
||||||
|
|
||||||
r = pixSauvolaBinarizeTiled(pix_grey, whsize, 0.40, nx, ny,
|
double kfactor;
|
||||||
|
b = api->GetDoubleVariable("thresholding_kfactor", &kfactor);
|
||||||
|
r = pixSauvolaBinarizeTiled(pix_grey, half_window_size, kfactor, nx, ny,
|
||||||
(PIX**)pix_thresholds,
|
(PIX**)pix_thresholds,
|
||||||
(PIX**)pix_binary);
|
(PIX**)pix_binary);
|
||||||
} else { // if (method == ThresholdMethod::AdaptiveOtsu)
|
} else { // if (method == ThresholdMethod::AdaptiveOtsu)
|
||||||
r = pixOtsuAdaptiveThreshold(pix_grey, 300, 300, 0, 0, 0.1,
|
bool b;
|
||||||
(PIX**)pix_thresholds, (PIX**)pix_binary);
|
int tile_size;
|
||||||
|
b = api->GetIntVariable("thresholding_tile_size", &tile_size);
|
||||||
|
int smooth_size;
|
||||||
|
b = api->GetIntVariable("thresholding_smooth_size", &smooth_size);
|
||||||
|
int half_smooth_size = smooth_size / 2;
|
||||||
|
double score_fraction;
|
||||||
|
b = api->GetDoubleVariable("thresholding_score_fraction", &score_fraction);
|
||||||
|
r = pixOtsuAdaptiveThreshold(pix_grey, tile_size, tile_size,
|
||||||
|
half_smooth_size, half_smooth_size,
|
||||||
|
score_fraction,
|
||||||
|
(PIX**)pix_thresholds,
|
||||||
|
(PIX**)pix_binary);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool ok = (r == 0);
|
bool ok = (r == 0);
|
||||||
|
@ -28,6 +28,8 @@ struct Pix;
|
|||||||
|
|
||||||
namespace tesseract {
|
namespace tesseract {
|
||||||
|
|
||||||
|
class TessBaseAPI;
|
||||||
|
|
||||||
/// Base class for all tesseract image thresholding classes.
|
/// Base class for all tesseract image thresholding classes.
|
||||||
/// Specific classes can add new thresholding methods by
|
/// Specific classes can add new thresholding methods by
|
||||||
/// overriding ThresholdToPix.
|
/// overriding ThresholdToPix.
|
||||||
@ -121,7 +123,7 @@ public:
|
|||||||
/// Returns false on error.
|
/// Returns false on error.
|
||||||
virtual bool ThresholdToPix(Image *pix);
|
virtual bool ThresholdToPix(Image *pix);
|
||||||
|
|
||||||
virtual std::tuple<bool, Image, Image, Image> Threshold(
|
virtual std::tuple<bool, Image, Image, Image> Threshold(TessBaseAPI *api,
|
||||||
ThresholdMethod method);
|
ThresholdMethod method);
|
||||||
|
|
||||||
// Gets a pix that contains an 8 bit threshold value at each pixel. The
|
// Gets a pix that contains an 8 bit threshold value at each pixel. The
|
||||||
|
Loading…
Reference in New Issue
Block a user