Make CLIST templated. Move member methods inside the class. Move helper classes (CLIST_LINK and CLIST_ITERATOR inside the list class).

This allows us to use real C++ templates for different instantiations instead of void * emulation.
This commit is contained in:
Egor Pugin 2024-11-22 03:38:07 +03:00
parent 32fee19447
commit 3088d2eecc
2 changed files with 896 additions and 1051 deletions

View File

@ -1,444 +0,0 @@
/**********************************************************************
* File: clst.cpp (Formerly clist.c)
* Description: CONS cell list handling code which is not in the include file.
* Author: Phil Cheatle
*
* (C) Copyright 1991, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "clst.h"
#include <cstdlib>
namespace tesseract {
/***********************************************************************
* CLIST::internal_deep_clear
*
* Used by the "deep_clear" member function of derived list
* classes to destroy all the elements on the list.
* The calling function passes a "zapper" function which can be called to
* delete each data element of the list, regardless of its class. This
* technique permits a generic clear function to destroy elements of
* different derived types correctly, without requiring virtual functions and
* the consequential memory overhead.
**********************************************************************/
void CLIST::internal_deep_clear( // destroy all links
void (*zapper)(void *)) { // ptr to zapper functn
if (!empty()) {
auto ptr = last->next; // set to first
last->next = nullptr; // break circle
last = nullptr; // set list empty
while (ptr) {
auto next = ptr->next;
zapper(ptr->data);
delete (ptr);
ptr = next;
}
}
}
/***********************************************************************
* CLIST::shallow_clear
*
* Used by the destructor and the "shallow_clear" member function of derived
* list classes to destroy the list.
* The data elements are NOT destroyed.
*
**********************************************************************/
void CLIST::shallow_clear() { // destroy all links
if (!empty()) {
auto ptr = last->next; // set to first
last->next = nullptr; // break circle
last = nullptr; // set list empty
while (ptr) {
auto next = ptr->next;
delete (ptr);
ptr = next;
}
}
}
/***********************************************************************
* CLIST::assign_to_sublist
*
* The list is set to a sublist of another list. "This" list must be empty
* before this function is invoked. The two iterators passed must refer to
* the same list, different from "this" one. The sublist removed is the
* inclusive list from start_it's current position to end_it's current
* position. If this range passes over the end of the source list then the
* source list has its end set to the previous element of start_it. The
* extracted sublist is unaffected by the end point of the source list, its
* end point is always the end_it position.
**********************************************************************/
void CLIST::assign_to_sublist( // to this list
CLIST_ITERATOR *start_it, // from list start
CLIST_ITERATOR *end_it) { // from list end
constexpr ERRCODE LIST_NOT_EMPTY("Destination list must be empty before extracting a sublist");
if (!empty()) {
LIST_NOT_EMPTY.error("CLIST.assign_to_sublist", ABORT);
}
last = start_it->extract_sublist(end_it);
}
/***********************************************************************
* CLIST::sort
*
* Sort elements on list
**********************************************************************/
void CLIST::sort( // sort elements
int comparator( // comparison routine
const void *, const void *)) {
// Allocate an array of pointers, one per list element.
auto count = length();
if (count > 0) {
// ptr array to sort
std::vector<void *> base;
base.reserve(count);
CLIST_ITERATOR it(this);
// Extract all elements, putting the pointers in the array.
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
base.push_back(it.extract());
}
// Sort the pointer array.
qsort(&base[0], count, sizeof(base[0]), comparator);
// Rebuild the list from the sorted pointers.
for (auto current : base) {
it.add_to_end(current);
}
}
}
// Assuming list has been sorted already, insert new_data to
// keep the list sorted according to the same comparison function.
// Comparison function is the same as used by sort, i.e. uses double
// indirection. Time is O(1) to add to beginning or end.
// Time is linear to add pre-sorted items to an empty list.
// If unique, then don't add duplicate entries.
// Returns true if the element was added to the list.
bool CLIST::add_sorted(int comparator(const void *, const void *), bool unique, void *new_data) {
// Check for adding at the end.
if (last == nullptr || comparator(&last->data, &new_data) < 0) {
auto *new_element = new CLIST_LINK;
new_element->data = new_data;
if (last == nullptr) {
new_element->next = new_element;
} else {
new_element->next = last->next;
last->next = new_element;
}
last = new_element;
return true;
} else if (!unique || last->data != new_data) {
// Need to use an iterator.
CLIST_ITERATOR it(this);
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
void *data = it.data();
if (data == new_data && unique) {
return false;
}
if (comparator(&data, &new_data) > 0) {
break;
}
}
if (it.cycled_list()) {
it.add_to_end(new_data);
} else {
it.add_before_then_move(new_data);
}
return true;
}
return false;
}
// Assuming that the minuend and subtrahend are already sorted with
// the same comparison function, shallow clears this and then copies
// the set difference minuend - subtrahend to this, being the elements
// of minuend that do not compare equal to anything in subtrahend.
// If unique is true, any duplicates in minuend are also eliminated.
void CLIST::set_subtract(int comparator(const void *, const void *), bool unique, CLIST *minuend,
CLIST *subtrahend) {
shallow_clear();
CLIST_ITERATOR m_it(minuend);
CLIST_ITERATOR s_it(subtrahend);
// Since both lists are sorted, finding the subtras that are not
// minus is a case of a parallel iteration.
for (m_it.mark_cycle_pt(); !m_it.cycled_list(); m_it.forward()) {
void *minu = m_it.data();
void *subtra = nullptr;
if (!s_it.empty()) {
subtra = s_it.data();
while (!s_it.at_last() && comparator(&subtra, &minu) < 0) {
s_it.forward();
subtra = s_it.data();
}
}
if (subtra == nullptr || comparator(&subtra, &minu) != 0) {
add_sorted(comparator, unique, minu);
}
}
}
/***********************************************************************
* MEMBER FUNCTIONS OF CLASS: CLIST_ITERATOR
* =========================================
**********************************************************************/
/***********************************************************************
* CLIST_ITERATOR::forward
*
* Move the iterator to the next element of the list.
* REMEMBER: ALL LISTS ARE CIRCULAR.
**********************************************************************/
void *CLIST_ITERATOR::forward() {
if (list->empty()) {
return nullptr;
}
if (current) { // not removed so
// set previous
prev = current;
started_cycling = true;
// In case next is deleted by another iterator, get next from current.
current = current->next;
} else {
if (ex_current_was_cycle_pt) {
cycle_pt = next;
}
current = next;
}
next = current->next;
return current->data;
}
/***********************************************************************
* CLIST_ITERATOR::data_relative
*
* Return the data pointer to the element "offset" elements from current.
* "offset" must not be less than -1.
* (This function can't be INLINEd because it contains a loop)
**********************************************************************/
void *CLIST_ITERATOR::data_relative( // get data + or - ...
int8_t offset) { // offset from current
CLIST_LINK *ptr;
#ifndef NDEBUG
if (!list)
NO_LIST.error("CLIST_ITERATOR::data_relative", ABORT);
if (list->empty())
EMPTY_LIST.error("CLIST_ITERATOR::data_relative", ABORT);
if (offset < -1)
BAD_PARAMETER.error("CLIST_ITERATOR::data_relative", ABORT, "offset < -l");
#endif
if (offset == -1) {
ptr = prev;
} else {
for (ptr = current ? current : prev; offset-- > 0; ptr = ptr->next) {
;
}
}
return ptr->data;
}
/***********************************************************************
* CLIST_ITERATOR::move_to_last()
*
* Move current so that it is set to the end of the list.
* Return data just in case anyone wants it.
* (This function can't be INLINEd because it contains a loop)
**********************************************************************/
void *CLIST_ITERATOR::move_to_last() {
while (current != list->last) {
forward();
}
if (current == nullptr) {
return nullptr;
} else {
return current->data;
}
}
/***********************************************************************
* CLIST_ITERATOR::exchange()
*
* Given another iterator, whose current element is a different element on
* the same list list OR an element of another list, exchange the two current
* elements. On return, each iterator points to the element which was the
* other iterators current on entry.
* (This function hasn't been in-lined because its a bit big!)
**********************************************************************/
void CLIST_ITERATOR::exchange( // positions of 2 links
CLIST_ITERATOR *other_it) { // other iterator
constexpr ERRCODE DONT_EXCHANGE_DELETED("Can't exchange deleted elements of lists");
/* Do nothing if either list is empty or if both iterators reference the same
link */
if ((list->empty()) || (other_it->list->empty()) || (current == other_it->current)) {
return;
}
/* Error if either current element is deleted */
if (!current || !other_it->current) {
DONT_EXCHANGE_DELETED.error("CLIST_ITERATOR.exchange", ABORT);
}
/* Now handle the 4 cases: doubleton list; non-doubleton adjacent elements
(other before this); non-doubleton adjacent elements (this before other);
non-adjacent elements. */
// adjacent links
if ((next == other_it->current) || (other_it->next == current)) {
// doubleton list
if ((next == other_it->current) && (other_it->next == current)) {
prev = next = current;
other_it->prev = other_it->next = other_it->current;
} else { // non-doubleton with
// adjacent links
// other before this
if (other_it->next == current) {
other_it->prev->next = current;
other_it->current->next = next;
current->next = other_it->current;
other_it->next = other_it->current;
prev = current;
} else { // this before other
prev->next = other_it->current;
current->next = other_it->next;
other_it->current->next = current;
next = current;
other_it->prev = other_it->current;
}
}
} else { // no overlap
prev->next = other_it->current;
current->next = other_it->next;
other_it->prev->next = current;
other_it->current->next = next;
}
/* update end of list pointer when necessary (remember that the 2 iterators
may iterate over different lists!) */
if (list->last == current) {
list->last = other_it->current;
}
if (other_it->list->last == other_it->current) {
other_it->list->last = current;
}
if (current == cycle_pt) {
cycle_pt = other_it->cycle_pt;
}
if (other_it->current == other_it->cycle_pt) {
other_it->cycle_pt = cycle_pt;
}
/* The actual exchange - in all cases*/
auto old_current = current;
current = other_it->current;
other_it->current = old_current;
}
/***********************************************************************
* CLIST_ITERATOR::extract_sublist()
*
* This is a private member, used only by CLIST::assign_to_sublist.
* Given another iterator for the same list, extract the links from THIS to
* OTHER inclusive, link them into a new circular list, and return a
* pointer to the last element.
* (Can't inline this function because it contains a loop)
**********************************************************************/
CLIST_LINK *CLIST_ITERATOR::extract_sublist( // from this current
CLIST_ITERATOR *other_it) { // to other current
CLIST_ITERATOR temp_it = *this;
constexpr ERRCODE BAD_SUBLIST("Can't find sublist end point in original list");
#ifndef NDEBUG
constexpr ERRCODE BAD_EXTRACTION_PTS("Can't extract sublist from points on different lists");
constexpr ERRCODE DONT_EXTRACT_DELETED("Can't extract a sublist marked by deleted points");
if (list != other_it->list)
BAD_EXTRACTION_PTS.error("CLIST_ITERATOR.extract_sublist", ABORT);
if (list->empty())
EMPTY_LIST.error("CLIST_ITERATOR::extract_sublist", ABORT);
if (!current || !other_it->current)
DONT_EXTRACT_DELETED.error("CLIST_ITERATOR.extract_sublist", ABORT);
#endif
ex_current_was_last = other_it->ex_current_was_last = false;
ex_current_was_cycle_pt = false;
other_it->ex_current_was_cycle_pt = false;
temp_it.mark_cycle_pt();
do { // walk sublist
if (temp_it.cycled_list()) { // can't find end pt
BAD_SUBLIST.error("CLIST_ITERATOR.extract_sublist", ABORT);
}
if (temp_it.at_last()) {
list->last = prev;
ex_current_was_last = other_it->ex_current_was_last = true;
}
if (temp_it.current == cycle_pt) {
ex_current_was_cycle_pt = true;
}
if (temp_it.current == other_it->cycle_pt) {
other_it->ex_current_was_cycle_pt = true;
}
temp_it.forward();
} while (temp_it.prev != other_it->current);
// circularise sublist
other_it->current->next = current;
auto end_of_new_list = other_it->current;
// sublist = whole list
if (prev == other_it->current) {
list->last = nullptr;
prev = current = next = nullptr;
other_it->prev = other_it->current = other_it->next = nullptr;
} else {
prev->next = other_it->next;
current = other_it->current = nullptr;
next = other_it->next;
other_it->prev = prev;
}
return end_of_new_list;
}
} // namespace tesseract

View File

@ -27,7 +27,18 @@
namespace tesseract { namespace tesseract {
class CLIST_ITERATOR; /**********************************************************************
* CLASS - CLIST
*
* Generic list class for singly linked CONS cell lists
**********************************************************************/
template <typename CLASSNAME>
class TESS_API CLIST {
friend class CLIST_LINK;
//friend class CLIST_ITERATOR;
public:
/********************************************************************** /**********************************************************************
* CLASS - CLIST_LINK * CLASS - CLIST_LINK
@ -38,11 +49,7 @@ class CLIST_ITERATOR;
* they have been extracted from a list OR by the CLIST destructor which * they have been extracted from a list OR by the CLIST destructor which
* walks the list. * walks the list.
**********************************************************************/ **********************************************************************/
struct CLIST_LINK {
class CLIST_LINK {
friend class CLIST_ITERATOR;
friend class CLIST;
CLIST_LINK *next; CLIST_LINK *next;
void *data; void *data;
@ -55,97 +62,13 @@ public:
void operator=(const CLIST_LINK &) = delete; void operator=(const CLIST_LINK &) = delete;
}; };
/**********************************************************************
* CLASS - CLIST
*
* Generic list class for singly linked CONS cell lists
**********************************************************************/
class TESS_API CLIST {
friend class CLIST_ITERATOR;
CLIST_LINK *last = nullptr; // End of list
//(Points to head)
CLIST_LINK *First() { // return first
return last != nullptr ? last->next : nullptr;
}
const CLIST_LINK *First() const { // return first
return last != nullptr ? last->next : nullptr;
}
public:
~CLIST() { // destructor
shallow_clear();
}
void internal_deep_clear( // destroy all links
void (*zapper)(void *)); // ptr to zapper functn
void shallow_clear(); // clear list but don't
// delete data elements
bool empty() const { // is list empty?
return !last;
}
bool singleton() const {
return last != nullptr ? (last == last->next) : false;
}
void shallow_copy( // dangerous!!
CLIST *from_list) { // beware destructors!!
last = from_list->last;
}
void assign_to_sublist( // to this list
CLIST_ITERATOR *start_it, // from list start
CLIST_ITERATOR *end_it); // from list end
int32_t length() const { //# elements in list
int32_t count = 0;
if (last != nullptr) {
count = 1;
for (auto it = last->next; it != last; it = it->next) {
count++;
}
}
return count;
}
void sort( // sort elements
int comparator( // comparison routine
const void *, const void *));
// Assuming list has been sorted already, insert new_data to
// keep the list sorted according to the same comparison function.
// Comparison function is the same as used by sort, i.e. uses double
// indirection. Time is O(1) to add to beginning or end.
// Time is linear to add pre-sorted items to an empty list.
// If unique, then don't add duplicate entries.
// Returns true if the element was added to the list.
bool add_sorted(int comparator(const void *, const void *), bool unique, void *new_data);
// Assuming that the minuend and subtrahend are already sorted with
// the same comparison function, shallow clears this and then copies
// the set difference minuend - subtrahend to this, being the elements
// of minuend that do not compare equal to anything in subtrahend.
// If unique is true, any duplicates in minuend are also eliminated.
void set_subtract(int comparator(const void *, const void *), bool unique, CLIST *minuend,
CLIST *subtrahend);
};
/*********************************************************************** /***********************************************************************
* CLASS - CLIST_ITERATOR * CLASS - CLIST_ITERATOR
* *
* Generic iterator class for singly linked lists with embedded * Generic iterator class for singly linked lists with embedded
*links *links
**********************************************************************/ **********************************************************************/
class TESS_API CLIST_ITERATOR { class TESS_API CLIST_ITERATOR {
friend void CLIST::assign_to_sublist(CLIST_ITERATOR *, CLIST_ITERATOR *);
CLIST *list; // List being iterated CLIST *list; // List being iterated
CLIST_LINK *prev; // prev element CLIST_LINK *prev; // prev element
CLIST_LINK *current; // current element CLIST_LINK *current; // current element
@ -155,86 +78,91 @@ class TESS_API CLIST_ITERATOR {
bool ex_current_was_cycle_pt; // current extracted was cycle point bool ex_current_was_cycle_pt; // current extracted was cycle point
bool started_cycling; // Have we moved off the start? bool started_cycling; // Have we moved off the start?
CLIST_LINK *extract_sublist( // from this current... /***********************************************************************
CLIST_ITERATOR *other_it); // to other current * CLIST_ITERATOR::extract_sublist()
*
* This is a private member, used only by CLIST::assign_to_sublist.
* Given another iterator for the same list, extract the links from THIS to
* OTHER inclusive, link them into a new circular list, and return a
* pointer to the last element.
* (Can't inline this function because it contains a loop)
**********************************************************************/
CLIST_LINK *extract_sublist( // from this current
CLIST_ITERATOR *other_it) { // to other current
CLIST_ITERATOR temp_it = *this;
constexpr ERRCODE BAD_SUBLIST("Can't find sublist end point in original list");
#ifndef NDEBUG
constexpr ERRCODE BAD_EXTRACTION_PTS("Can't extract sublist from points on different lists");
constexpr ERRCODE DONT_EXTRACT_DELETED("Can't extract a sublist marked by deleted points");
if (list != other_it->list)
BAD_EXTRACTION_PTS.error("CLIST_ITERATOR.extract_sublist", ABORT);
if (list->empty())
EMPTY_LIST.error("CLIST_ITERATOR::extract_sublist", ABORT);
if (!current || !other_it->current)
DONT_EXTRACT_DELETED.error("CLIST_ITERATOR.extract_sublist", ABORT);
#endif
ex_current_was_last = other_it->ex_current_was_last = false;
ex_current_was_cycle_pt = false;
other_it->ex_current_was_cycle_pt = false;
temp_it.mark_cycle_pt();
do { // walk sublist
if (temp_it.cycled_list()) { // can't find end pt
BAD_SUBLIST.error("CLIST_ITERATOR.extract_sublist", ABORT);
}
if (temp_it.at_last()) {
list->last = prev;
ex_current_was_last = other_it->ex_current_was_last = true;
}
if (temp_it.current == cycle_pt) {
ex_current_was_cycle_pt = true;
}
if (temp_it.current == other_it->cycle_pt) {
other_it->ex_current_was_cycle_pt = true;
}
temp_it.forward();
} while (temp_it.prev != other_it->current);
// circularise sublist
other_it->current->next = current;
auto end_of_new_list = other_it->current;
// sublist = whole list
if (prev == other_it->current) {
list->last = nullptr;
prev = current = next = nullptr;
other_it->prev = other_it->current = other_it->next = nullptr;
} else {
prev->next = other_it->next;
current = other_it->current = nullptr;
next = other_it->next;
other_it->prev = prev;
}
return end_of_new_list;
}
public: public:
CLIST_ITERATOR() { // constructor CLIST_ITERATOR() { // constructor
list = nullptr; list = nullptr;
} // unassigned list } // unassigned list
/***********************************************************************
* CLIST_ITERATOR::CLIST_ITERATOR
*
* CONSTRUCTOR - set iterator to specified list;
**********************************************************************/
CLIST_ITERATOR( // constructor CLIST_ITERATOR( // constructor
CLIST *list_to_iterate); CLIST *list_to_iterate) {
set_to_list(list_to_iterate);
void set_to_list( // change list
CLIST *list_to_iterate);
void add_after_then_move( // add after current &
void *new_data); // move to new
void add_after_stay_put( // add after current &
void *new_data); // stay at current
void add_before_then_move( // add before current &
void *new_data); // move to new
void add_before_stay_put( // add before current &
void *new_data); // stay at current
void add_list_after( // add a list &
CLIST *list_to_add); // stay at current
void add_list_before( // add a list &
CLIST *list_to_add); // move to it 1st item
void *data() { // get current data
#ifndef NDEBUG
if (!list) {
NO_LIST.error("CLIST_ITERATOR::data", ABORT);
} }
#endif
return current->data;
}
void *data_relative( // get data + or - ...
int8_t offset); // offset from current
void *forward(); // move to next element
void *extract(); // remove from list
void *move_to_first(); // go to start of list
void *move_to_last(); // go to end of list
void mark_cycle_pt(); // remember current
bool empty() const { // is list empty?
return list->empty();
}
bool current_extracted() const { // current extracted?
return !current;
}
bool at_first() const; // Current is first?
bool at_last() const; // Current is last?
bool cycled_list() const; // Completed a cycle?
void add_to_end( // add at end &
void *new_data); // don't move
void exchange( // positions of 2 links
CLIST_ITERATOR *other_it); // other iterator
int32_t length() const; //# elements in list
void sort( // sort elements
int comparator( // comparison routine
const void *, const void *));
};
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::set_to_list * CLIST_ITERATOR::set_to_list
@ -242,8 +170,7 @@ public:
* (Re-)initialise the iterator to point to the start of the list_to_iterate * (Re-)initialise the iterator to point to the start of the list_to_iterate
* over. * over.
**********************************************************************/ **********************************************************************/
void set_to_list( // change list
inline void CLIST_ITERATOR::set_to_list( // change list
CLIST *list_to_iterate) { CLIST *list_to_iterate) {
list = list_to_iterate; list = list_to_iterate;
prev = list->last; prev = list->last;
@ -255,24 +182,13 @@ inline void CLIST_ITERATOR::set_to_list( // change list
ex_current_was_cycle_pt = false; ex_current_was_cycle_pt = false;
} }
/***********************************************************************
* CLIST_ITERATOR::CLIST_ITERATOR
*
* CONSTRUCTOR - set iterator to specified list;
**********************************************************************/
inline CLIST_ITERATOR::CLIST_ITERATOR(CLIST *list_to_iterate) {
set_to_list(list_to_iterate);
}
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::add_after_then_move * CLIST_ITERATOR::add_after_then_move
* *
* Add a new element to the list after the current element and move the * Add a new element to the list after the current element and move the
* iterator to the new element. * iterator to the new element.
**********************************************************************/ **********************************************************************/
void add_after_then_move( // add after current &
inline void CLIST_ITERATOR::add_after_then_move( // element to add
void *new_data) { void *new_data) {
#ifndef NDEBUG #ifndef NDEBUG
if (!new_data) { if (!new_data) {
@ -307,7 +223,7 @@ inline void CLIST_ITERATOR::add_after_then_move( // element to add
} }
} }
current = new_element; current = new_element;
} } // move to new
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::add_after_stay_put * CLIST_ITERATOR::add_after_stay_put
@ -315,8 +231,7 @@ inline void CLIST_ITERATOR::add_after_then_move( // element to add
* Add a new element to the list after the current element but do not move * Add a new element to the list after the current element but do not move
* the iterator to the new element. * the iterator to the new element.
**********************************************************************/ **********************************************************************/
void add_after_stay_put( // add after current &
inline void CLIST_ITERATOR::add_after_stay_put( // element to add
void *new_data) { void *new_data) {
#ifndef NDEBUG #ifndef NDEBUG
if (!new_data) { if (!new_data) {
@ -353,7 +268,7 @@ inline void CLIST_ITERATOR::add_after_stay_put( // element to add
} }
next = new_element; next = new_element;
} }
} } // stay at current
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::add_before_then_move * CLIST_ITERATOR::add_before_then_move
@ -361,8 +276,7 @@ inline void CLIST_ITERATOR::add_after_stay_put( // element to add
* Add a new element to the list before the current element and move the * Add a new element to the list before the current element and move the
* iterator to the new element. * iterator to the new element.
**********************************************************************/ **********************************************************************/
void add_before_then_move( // add before current &
inline void CLIST_ITERATOR::add_before_then_move( // element to add
void *new_data) { void *new_data) {
#ifndef NDEBUG #ifndef NDEBUG
if (!new_data) { if (!new_data) {
@ -393,7 +307,7 @@ inline void CLIST_ITERATOR::add_before_then_move( // element to add
} }
} }
current = new_element; current = new_element;
} } // move to new
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::add_before_stay_put * CLIST_ITERATOR::add_before_stay_put
@ -401,8 +315,7 @@ inline void CLIST_ITERATOR::add_before_then_move( // element to add
* Add a new element to the list before the current element but don't move the * Add a new element to the list before the current element but don't move the
* iterator to the new element. * iterator to the new element.
**********************************************************************/ **********************************************************************/
void add_before_stay_put( // add before current &
inline void CLIST_ITERATOR::add_before_stay_put( // element to add
void *new_data) { void *new_data) {
#ifndef NDEBUG #ifndef NDEBUG
if (!new_data) { if (!new_data) {
@ -434,7 +347,7 @@ inline void CLIST_ITERATOR::add_before_stay_put( // element to add
} }
prev = new_element; prev = new_element;
} }
} } // stay at current
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::add_list_after * CLIST_ITERATOR::add_list_after
@ -443,8 +356,8 @@ inline void CLIST_ITERATOR::add_before_stay_put( // element to add
*the *the
* iterator. * iterator.
**********************************************************************/ **********************************************************************/
void add_list_after( // add a list &
inline void CLIST_ITERATOR::add_list_after(CLIST *list_to_add) { CLIST *list_to_add) {
if (!list_to_add->empty()) { if (!list_to_add->empty()) {
if (list->empty()) { if (list->empty()) {
list->last = list_to_add->last; list->last = list_to_add->last;
@ -472,7 +385,7 @@ inline void CLIST_ITERATOR::add_list_after(CLIST *list_to_add) {
} }
list_to_add->last = nullptr; list_to_add->last = nullptr;
} }
} } // stay at current
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::add_list_before * CLIST_ITERATOR::add_list_before
@ -481,8 +394,8 @@ inline void CLIST_ITERATOR::add_list_after(CLIST *list_to_add) {
* iterator to the start of the inserted elements * iterator to the start of the inserted elements
* iterator. * iterator.
**********************************************************************/ **********************************************************************/
void add_list_before( // add a list &
inline void CLIST_ITERATOR::add_list_before(CLIST *list_to_add) { CLIST *list_to_add) {
if (!list_to_add->empty()) { if (!list_to_add->empty()) {
if (list->empty()) { if (list->empty()) {
list->last = list_to_add->last; list->last = list_to_add->last;
@ -508,6 +421,74 @@ inline void CLIST_ITERATOR::add_list_before(CLIST *list_to_add) {
} }
list_to_add->last = nullptr; list_to_add->last = nullptr;
} }
} // move to it 1st item
void *data() { // get current data
#ifndef NDEBUG
if (!list) {
NO_LIST.error("CLIST_ITERATOR::data", ABORT);
}
#endif
return current->data;
}
/***********************************************************************
* CLIST_ITERATOR::data_relative
*
* Return the data pointer to the element "offset" elements from current.
* "offset" must not be less than -1.
* (This function can't be INLINEd because it contains a loop)
**********************************************************************/
void *data_relative( // get data + or - ...
int8_t offset) { // offset from current
CLIST_LINK *ptr;
#ifndef NDEBUG
if (!list)
NO_LIST.error("CLIST_ITERATOR::data_relative", ABORT);
if (list->empty())
EMPTY_LIST.error("CLIST_ITERATOR::data_relative", ABORT);
if (offset < -1)
BAD_PARAMETER.error("CLIST_ITERATOR::data_relative", ABORT, "offset < -l");
#endif
if (offset == -1) {
ptr = prev;
} else {
for (ptr = current ? current : prev; offset-- > 0; ptr = ptr->next) {
;
}
}
return ptr->data;
}
/***********************************************************************
* CLIST_ITERATOR::forward
*
* Move the iterator to the next element of the list.
* REMEMBER: ALL LISTS ARE CIRCULAR.
**********************************************************************/
void *forward() {
if (list->empty()) {
return nullptr;
}
if (current) { // not removed so
// set previous
prev = current;
started_cycling = true;
// In case next is deleted by another iterator, get next from current.
current = current->next;
} else {
if (ex_current_was_cycle_pt) {
cycle_pt = next;
}
current = next;
}
next = current->next;
return current->data;
} }
/*********************************************************************** /***********************************************************************
@ -518,8 +499,7 @@ inline void CLIST_ITERATOR::add_list_before(CLIST *list_to_add) {
* that any calling loop can do this.) The iterator's current points to * that any calling loop can do this.) The iterator's current points to
* nullptr. If the data is to be deleted, this is the callers responsibility. * nullptr. If the data is to be deleted, this is the callers responsibility.
**********************************************************************/ **********************************************************************/
void *extract() {
inline void *CLIST_ITERATOR::extract() {
#ifndef NDEBUG #ifndef NDEBUG
if (!current) { // list empty or if (!current) { // list empty or
// element extracted // element extracted
@ -546,7 +526,7 @@ inline void *CLIST_ITERATOR::extract() {
delete (current); // destroy CONS cell delete (current); // destroy CONS cell
current = nullptr; current = nullptr;
return extracted_data; return extracted_data;
} } // remove from list
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::move_to_first() * CLIST_ITERATOR::move_to_first()
@ -554,12 +534,30 @@ inline void *CLIST_ITERATOR::extract() {
* Move current so that it is set to the start of the list. * Move current so that it is set to the start of the list.
* Return data just in case anyone wants it. * Return data just in case anyone wants it.
**********************************************************************/ **********************************************************************/
void *move_to_first() {
inline void *CLIST_ITERATOR::move_to_first() {
current = list->First(); current = list->First();
prev = list->last; prev = list->last;
next = current != nullptr ? current->next : nullptr; next = current != nullptr ? current->next : nullptr;
return current != nullptr ? current->data : nullptr; return current != nullptr ? current->data : nullptr;
} // go to start of list
/***********************************************************************
* CLIST_ITERATOR::move_to_last()
*
* Move current so that it is set to the end of the list.
* Return data just in case anyone wants it.
* (This function can't be INLINEd because it contains a loop)
**********************************************************************/
void *move_to_last() {
while (current != list->last) {
forward();
}
if (current == nullptr) {
return nullptr;
} else {
return current->data;
}
} }
/*********************************************************************** /***********************************************************************
@ -572,8 +570,7 @@ inline void *CLIST_ITERATOR::move_to_first() {
* point will be set to the next item which is set to current. This could be * point will be set to the next item which is set to current. This could be
* by a forward, add_after_then_move or add_after_then_move. * by a forward, add_after_then_move or add_after_then_move.
**********************************************************************/ **********************************************************************/
void mark_cycle_pt() {
inline void CLIST_ITERATOR::mark_cycle_pt() {
#ifndef NDEBUG #ifndef NDEBUG
if (!list) { if (!list) {
NO_LIST.error("CLIST_ITERATOR::mark_cycle_pt", ABORT); NO_LIST.error("CLIST_ITERATOR::mark_cycle_pt", ABORT);
@ -586,6 +583,14 @@ inline void CLIST_ITERATOR::mark_cycle_pt() {
ex_current_was_cycle_pt = true; ex_current_was_cycle_pt = true;
} }
started_cycling = false; started_cycling = false;
} // remember current
bool empty() const { // is list empty?
return list->empty();
}
bool current_extracted() const { // current extracted?
return !current;
} }
/*********************************************************************** /***********************************************************************
@ -594,13 +599,12 @@ inline void CLIST_ITERATOR::mark_cycle_pt() {
* Are we at the start of the list? * Are we at the start of the list?
* *
**********************************************************************/ **********************************************************************/
bool at_first() const {
inline bool CLIST_ITERATOR::at_first() const {
// we're at a deleted // we're at a deleted
return ((list->empty()) || (current == list->First()) || return ((list->empty()) || (current == list->First()) ||
((current == nullptr) && (prev == list->last) && // NON-last pt between ((current == nullptr) && (prev == list->last) && // NON-last pt between
!ex_current_was_last)); // first and last !ex_current_was_last)); // first and last
} } // Current is first?
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::at_last() * CLIST_ITERATOR::at_last()
@ -608,13 +612,12 @@ inline bool CLIST_ITERATOR::at_first() const {
* Are we at the end of the list? * Are we at the end of the list?
* *
**********************************************************************/ **********************************************************************/
bool at_last() const {
inline bool CLIST_ITERATOR::at_last() const {
// we're at a deleted // we're at a deleted
return ((list->empty()) || (current == list->last) || return ((list->empty()) || (current == list->last) ||
((current == nullptr) && (prev == list->last) && // last point between ((current == nullptr) && (prev == list->last) && // last point between
ex_current_was_last)); // first and last ex_current_was_last)); // first and last
} } // Current is last?
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::cycled_list() * CLIST_ITERATOR::cycled_list()
@ -622,36 +625,10 @@ inline bool CLIST_ITERATOR::at_last() const {
* Have we returned to the cycle_pt since it was set? * Have we returned to the cycle_pt since it was set?
* *
**********************************************************************/ **********************************************************************/
bool cycled_list() const { // Completed a cycle?
inline bool CLIST_ITERATOR::cycled_list() const {
return ((list->empty()) || ((current == cycle_pt) && started_cycling)); return ((list->empty()) || ((current == cycle_pt) && started_cycling));
} }
/***********************************************************************
* CLIST_ITERATOR::length()
*
* Return the length of the list
*
**********************************************************************/
inline int32_t CLIST_ITERATOR::length() const {
return list->length();
}
/***********************************************************************
* CLIST_ITERATOR::sort()
*
* Sort the elements of the list, then reposition at the start.
*
**********************************************************************/
inline void CLIST_ITERATOR::sort( // sort elements
int comparator( // comparison routine
const void *, const void *)) {
list->sort(comparator);
move_to_first();
}
/*********************************************************************** /***********************************************************************
* CLIST_ITERATOR::add_to_end * CLIST_ITERATOR::add_to_end
* *
@ -661,8 +638,7 @@ inline void CLIST_ITERATOR::sort( // sort elements
* essential for implementing * essential for implementing
queues. queues.
**********************************************************************/ **********************************************************************/
void add_to_end( // element to add
inline void CLIST_ITERATOR::add_to_end( // element to add
void *new_data) { void *new_data) {
#ifndef NDEBUG #ifndef NDEBUG
if (!list) { if (!list) {
@ -690,24 +666,337 @@ inline void CLIST_ITERATOR::add_to_end( // element to add
} }
} }
template <typename CLASSNAME> /***********************************************************************
class X_CLIST : public CLIST { * CLIST_ITERATOR::exchange()
public: *
X_CLIST() = default; * Given another iterator, whose current element is a different element on
X_CLIST(const X_CLIST &) = delete; * the same list list OR an element of another list, exchange the two current
X_CLIST &operator=(const X_CLIST &) = delete; * elements. On return, each iterator points to the element which was the
* other iterators current on entry.
* (This function hasn't been in-lined because its a bit big!)
**********************************************************************/
void exchange( // positions of 2 links
CLIST_ITERATOR *other_it) { // other iterator
constexpr ERRCODE DONT_EXCHANGE_DELETED("Can't exchange deleted elements of lists");
/* Do nothing if either list is empty or if both iterators reference the same
link */
if ((list->empty()) || (other_it->list->empty()) || (current == other_it->current)) {
return;
}
/* Error if either current element is deleted */
if (!current || !other_it->current) {
DONT_EXCHANGE_DELETED.error("CLIST_ITERATOR.exchange", ABORT);
}
/* Now handle the 4 cases: doubleton list; non-doubleton adjacent elements
(other before this); non-doubleton adjacent elements (this before other);
non-adjacent elements. */
// adjacent links
if ((next == other_it->current) || (other_it->next == current)) {
// doubleton list
if ((next == other_it->current) && (other_it->next == current)) {
prev = next = current;
other_it->prev = other_it->next = other_it->current;
} else { // non-doubleton with
// adjacent links
// other before this
if (other_it->next == current) {
other_it->prev->next = current;
other_it->current->next = next;
current->next = other_it->current;
other_it->next = other_it->current;
prev = current;
} else { // this before other
prev->next = other_it->current;
current->next = other_it->next;
other_it->current->next = current;
next = current;
other_it->prev = other_it->current;
}
}
} else { // no overlap
prev->next = other_it->current;
current->next = other_it->next;
other_it->prev->next = current;
other_it->current->next = next;
}
/* update end of list pointer when necessary (remember that the 2 iterators
may iterate over different lists!) */
if (list->last == current) {
list->last = other_it->current;
}
if (other_it->list->last == other_it->current) {
other_it->list->last = current;
}
if (current == cycle_pt) {
cycle_pt = other_it->cycle_pt;
}
if (other_it->current == other_it->cycle_pt) {
other_it->cycle_pt = cycle_pt;
}
/* The actual exchange - in all cases*/
auto old_current = current;
current = other_it->current;
other_it->current = old_current;
}
/***********************************************************************
* CLIST_ITERATOR::length()
*
* Return the length of the list
*
**********************************************************************/
int32_t length() const {
return list->length();
}
/***********************************************************************
* CLIST_ITERATOR::sort()
*
* Sort the elements of the list, then reposition at the start.
*
**********************************************************************/
void sort( // sort elements
int comparator( // comparison routine
const void *, const void *)) {
list->sort(comparator);
move_to_first();
}
};
private:
CLIST_LINK *last = nullptr; // End of list
//(Points to head)
CLIST_LINK *First() { // return first
return last != nullptr ? last->next : nullptr;
}
const CLIST_LINK *First() const { // return first
return last != nullptr ? last->next : nullptr;
}
public:
~CLIST() { // destructor
shallow_clear();
}
/***********************************************************************
* CLIST::internal_deep_clear
*
* Used by the "deep_clear" member function of derived list
* classes to destroy all the elements on the list.
* The calling function passes a "zapper" function which can be called to
* delete each data element of the list, regardless of its class. This
* technique permits a generic clear function to destroy elements of
* different derived types correctly, without requiring virtual functions and
* the consequential memory overhead.
**********************************************************************/
void internal_deep_clear() { // ptr to zapper functn
if (!empty()) {
auto ptr = last->next; // set to first
last->next = nullptr; // break circle
last = nullptr; // set list empty
while (ptr) {
auto next = ptr->next;
delete ptr->data;
delete (ptr);
ptr = next;
}
}
}
void deep_clear() { void deep_clear() {
internal_deep_clear([](void *link) {delete static_cast<CLASSNAME *>(link);}); internal_deep_clear();
}
/***********************************************************************
* CLIST::shallow_clear
*
* Used by the destructor and the "shallow_clear" member function of derived
* list classes to destroy the list.
* The data elements are NOT destroyed.
*
**********************************************************************/
void shallow_clear() { // destroy all links
if (!empty()) {
auto ptr = last->next; // set to first
last->next = nullptr; // break circle
last = nullptr; // set list empty
while (ptr) {
auto next = ptr->next;
delete (ptr);
ptr = next;
}
}
}
bool empty() const { // is list empty?
return !last;
}
bool singleton() const {
return last != nullptr ? (last == last->next) : false;
}
void shallow_copy( // dangerous!!
CLIST *from_list) { // beware destructors!!
last = from_list->last;
}
/***********************************************************************
* CLIST::assign_to_sublist
*
* The list is set to a sublist of another list. "This" list must be empty
* before this function is invoked. The two iterators passed must refer to
* the same list, different from "this" one. The sublist removed is the
* inclusive list from start_it's current position to end_it's current
* position. If this range passes over the end of the source list then the
* source list has its end set to the previous element of start_it. The
* extracted sublist is unaffected by the end point of the source list, its
* end point is always the end_it position.
**********************************************************************/
void assign_to_sublist( // to this list
CLIST_ITERATOR *start_it, // from list start
CLIST_ITERATOR *end_it) { // from list end
constexpr ERRCODE LIST_NOT_EMPTY("Destination list must be empty before extracting a sublist");
if (!empty()) {
LIST_NOT_EMPTY.error("CLIST.assign_to_sublist", ABORT);
}
last = start_it->extract_sublist(end_it);
}
int32_t length() const { //# elements in list
int32_t count = 0;
if (last != nullptr) {
count = 1;
for (auto it = last->next; it != last; it = it->next) {
count++;
}
}
return count;
}
/***********************************************************************
* CLIST::sort
*
* Sort elements on list
**********************************************************************/
void sort( // sort elements
int comparator( // comparison routine
const void *, const void *)) {
// Allocate an array of pointers, one per list element.
auto count = length();
if (count > 0) {
// ptr array to sort
std::vector<void *> base;
base.reserve(count);
CLIST_ITERATOR it(this);
// Extract all elements, putting the pointers in the array.
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
base.push_back(it.extract());
}
// Sort the pointer array.
qsort(&base[0], count, sizeof(base[0]), comparator);
// Rebuild the list from the sorted pointers.
for (auto current : base) {
it.add_to_end(current);
}
}
}
// Assuming list has been sorted already, insert new_data to
// keep the list sorted according to the same comparison function.
// Comparison function is the same as used by sort, i.e. uses double
// indirection. Time is O(1) to add to beginning or end.
// Time is linear to add pre-sorted items to an empty list.
// If unique, then don't add duplicate entries.
// Returns true if the element was added to the list.
bool add_sorted(int comparator(const void *, const void *), bool unique, void *new_data) {
// Check for adding at the end.
if (last == nullptr || comparator(&last->data, &new_data) < 0) {
auto *new_element = new CLIST_LINK;
new_element->data = new_data;
if (last == nullptr) {
new_element->next = new_element;
} else {
new_element->next = last->next;
last->next = new_element;
}
last = new_element;
return true;
} else if (!unique || last->data != new_data) {
// Need to use an iterator.
CLIST_ITERATOR it(this);
for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
void *data = it.data();
if (data == new_data && unique) {
return false;
}
if (comparator(&data, &new_data) > 0) {
break;
}
}
if (it.cycled_list()) {
it.add_to_end(new_data);
} else {
it.add_before_then_move(new_data);
}
return true;
}
return false;
}
// Assuming that the minuend and subtrahend are already sorted with
// the same comparison function, shallow clears this and then copies
// the set difference minuend - subtrahend to this, being the elements
// of minuend that do not compare equal to anything in subtrahend.
// If unique is true, any duplicates in minuend are also eliminated.
void set_subtract(int comparator(const void *, const void *), bool unique, CLIST *minuend,
CLIST *subtrahend) {
shallow_clear();
CLIST_ITERATOR m_it(minuend);
CLIST_ITERATOR s_it(subtrahend);
// Since both lists are sorted, finding the subtras that are not
// minus is a case of a parallel iteration.
for (m_it.mark_cycle_pt(); !m_it.cycled_list(); m_it.forward()) {
void *minu = m_it.data();
void *subtra = nullptr;
if (!s_it.empty()) {
subtra = s_it.data();
while (!s_it.at_last() && comparator(&subtra, &minu) < 0) {
s_it.forward();
subtra = s_it.data();
}
}
if (subtra == nullptr || comparator(&subtra, &minu) != 0) {
add_sorted(comparator, unique, minu);
}
}
} }
}; };
#define CLISTIZEH(CLASSNAME) \ #define CLISTIZEH(CLASSNAME) \
class CLASSNAME##_CLIST : public X_CLIST<CLASSNAME> { \ class CLASSNAME##_CLIST : public CLIST<CLASSNAME> { \
using X_CLIST<CLASSNAME>::X_CLIST; \ using CLIST<CLASSNAME>::CLIST; \
}; \ }; \
struct CLASSNAME##_C_IT : X_ITER<CLIST_ITERATOR, CLASSNAME> { \ struct CLASSNAME##_C_IT : X_ITER<CLIST<CLASSNAME>::CLIST_ITERATOR, CLASSNAME> { \
using X_ITER<CLIST_ITERATOR, CLASSNAME>::X_ITER; \ using X_ITER<CLIST<CLASSNAME>::CLIST_ITERATOR, CLASSNAME>::X_ITER; \
}; };
} // namespace tesseract } // namespace tesseract