Integrated Timesteps per symbol into ChoiceIterator

Signed-off-by: Noah Metzger <noah.metzger@bib.uni-mannheim.de>

# Conflicts:
#	src/ccmain/ltrresultiterator.cpp
This commit is contained in:
Zdenko Podobný 2019-06-16 19:22:19 +02:00
parent 9897bc9c8d
commit 4d3455e1de
12 changed files with 204 additions and 75 deletions

View File

@ -229,11 +229,17 @@ char* TessBaseAPI::GetHOCRText(ETEXT_DESC* monitor, int page_number) {
}
// Now, process the word...
std::vector<std::vector<std::pair<const char*, float>>>* rawTimestepMap =
nullptr;
std::vector<std::vector<std::pair<const char*, float>>>* choiceMap =
nullptr;
std::vector<std::vector<std::vector<std::pair<const char*, float>>>>*
symbolMap = nullptr;
if (tesseract_->lstm_choice_mode) {
choiceMap = res_it->GetBestLSTMSymbolChoices();
symbolMap = res_it->GetSegmentedLSTMTimesteps();
rawTimestepMap = res_it->GetRawLSTMTimesteps();
}
hocr_str << "\n <span class='ocrx_word'"
<< " id='"
@ -299,8 +305,8 @@ char* TessBaseAPI::GetHOCRText(ETEXT_DESC* monitor, int page_number) {
if (italic) hocr_str << "</em>";
if (bold) hocr_str << "</strong>";
// If the lstm choice mode is required it is added here
if (tesseract_->lstm_choice_mode == 1 && choiceMap != nullptr) {
for (auto timestep : *choiceMap) {
if (tesseract_->lstm_choice_mode == 1 && rawTimestepMap != nullptr) {
for (auto timestep : *rawTimestepMap) {
hocr_str << "\n <span class='ocrx_cinfo'"
<< " id='"
<< "timestep_" << page_id << "_" << wcnt << "_" << tcnt << "'"
@ -336,6 +342,33 @@ char* TessBaseAPI::GetHOCRText(ETEXT_DESC* monitor, int page_number) {
tcnt++;
}
}
} else if (tesseract_->lstm_choice_mode == 3 && symbolMap != nullptr) {
for (auto timesteps : *symbolMap) {
hocr_str << "\n <span class='ocr_symbol'"
<< " id='"
<< "symbol_" << page_id << "_" << wcnt << "_" << scnt
<< "'>";
for (auto timestep : timesteps) {
hocr_str << "\n <span class='ocrx_cinfo'"
<< " id='"
<< "timestep_" << page_id << "_" << wcnt << "_" << tcnt
<< "'"
<< ">";
for (std::pair<const char*, float> conf : timestep) {
hocr_str << "<span class='ocr_glyph'"
<< " id='"
<< "choice_" << page_id << "_" << wcnt << "_" << gcnt
<< "'"
<< " title='x_confs " << int(conf.second * 100) << "'>"
<< conf.first << "</span>";
gcnt++;
}
hocr_str << "</span>";
tcnt++;
}
hocr_str << "</span>";
scnt++;
}
}
hocr_str << "</span>";
tcnt = 1;

View File

@ -357,7 +357,17 @@ bool LTRResultIterator::SymbolIsDropcap() const {
ChoiceIterator::ChoiceIterator(const LTRResultIterator& result_it) {
ASSERT_HOST(result_it.it_->word() != nullptr);
word_res_ = result_it.it_->word();
oemLSTM_ = word_res_->tesseract->AnyLSTMLang();
oemLegacy_ = word_res_->tesseract->AnyTessLang();
BLOB_CHOICE_LIST* choices = nullptr;
tstep_index_ = &result_it.blob_index_;
if (oemLSTM_ && !oemLegacy_ && !word_res_->accumulated_timesteps.empty()) {
if (word_res_->leadingSpace)
LSTM_choices_ = &word_res_->accumulated_timesteps[(*tstep_index_) + 1];
else
LSTM_choices_ = &word_res_->accumulated_timesteps[*tstep_index_];
filterSpaces();
}
if (word_res_->ratings != nullptr)
choices = word_res_->GetBlobChoices(result_it.blob_index_);
if (choices != nullptr && !choices->empty()) {
@ -366,23 +376,42 @@ ChoiceIterator::ChoiceIterator(const LTRResultIterator& result_it) {
} else {
choice_it_ = nullptr;
}
if (LSTM_choices_ != nullptr && !LSTM_choices_->empty()) {
LSTM_mode_ = true;
LSTM_choice_it_ = LSTM_choices_->begin();
}
}
ChoiceIterator::~ChoiceIterator() { delete choice_it_; }
// Moves to the next choice for the symbol and returns false if there
// are none left.
bool ChoiceIterator::Next() {
if (choice_it_ == nullptr) return false;
choice_it_->forward();
return !choice_it_->cycled_list();
if (LSTM_mode_) {
if (LSTM_choice_it_ != LSTM_choices_->end() &&
next(LSTM_choice_it_) == LSTM_choices_->end()) {
return false;
} else {
++LSTM_choice_it_;
return true;
}
} else {
if (choice_it_ == nullptr) return false;
choice_it_->forward();
return !choice_it_->cycled_list();
}
}
// Returns the null terminated UTF-8 encoded text string for the current
// choice. Do NOT use delete [] to free after use.
const char* ChoiceIterator::GetUTF8Text() const {
if (choice_it_ == nullptr) return nullptr;
UNICHAR_ID id = choice_it_->data()->unichar_id();
return word_res_->uch_set->id_to_unichar_ext(id);
if (LSTM_mode_) {
std::pair<const char*, float> choice = *LSTM_choice_it_;
return choice.first;
} else {
if (choice_it_ == nullptr) return nullptr;
UNICHAR_ID id = choice_it_->data()->unichar_id();
return word_res_->uch_set->id_to_unichar_ext(id);
}
}
// Returns the confidence of the current choice depending on the used language
@ -392,10 +421,47 @@ const char* ChoiceIterator::GetUTF8Text() const {
// interpreted as a percent probability. (0.0f-100.0f) In this case probabilities
// won't add up to 100. Each one stands on its own.
float ChoiceIterator::Confidence() const {
if (choice_it_ == nullptr) return 0.0f;
float confidence = 100 + 5 * choice_it_->data()->certainty();
if (confidence < 0.0f) confidence = 0.0f;
if (confidence > 100.0f) confidence = 100.0f;
return confidence;
if (LSTM_mode_) {
std::pair<const char*, float> choice = *LSTM_choice_it_;
return choice.second;
} else {
if (choice_it_ == nullptr) return 0.0f;
float confidence = 100 + 5 * choice_it_->data()->certainty();
if (confidence < 0.0f) confidence = 0.0f;
if (confidence > 100.0f) confidence = 100.0f;
return confidence;
}
}
// Returns the set of timesteps which belong to the current symbol
std::vector<std::vector<std::pair<const char*, float>>>*
ChoiceIterator::Timesteps() const {
if (word_res_->symbol_steps.empty() || !LSTM_mode_) return nullptr;
if (word_res_->leadingSpace) {
return &word_res_->symbol_steps[*(tstep_index_) + 1];
} else {
return &word_res_->symbol_steps[*tstep_index_];
}
}
void ChoiceIterator::filterSpaces() {
if (LSTM_choices_->empty()) return;
std::vector<std::pair<const char*, float>>::iterator it;
bool found_space = false;
float sum = 0;
for (it = LSTM_choices_->begin(); it != LSTM_choices_->end();) {
if (!strcmp(it->first, " ")) {
it = LSTM_choices_->erase(it);
found_space = true;
} else {
sum += it->second;
++it;
}
}
if (found_space) {
for (it = LSTM_choices_->begin(); it != LSTM_choices_->end(); ++it) {
it->second /= sum;
}
}
}
} // namespace tesseract.

View File

@ -216,11 +216,28 @@ class ChoiceIterator {
// probabilities won't add up to 100. Each one stands on its own.
float Confidence() const;
// Returns a vector containing all timesteps, which belong to the currently
// selected symbol. A timestep is a vector containing pairs of symbols and
// floating point numbers. The number states the probability for the
// corresponding symbol.
std::vector<std::vector<std::pair<const char*, float>>>* Timesteps() const;
private:
//clears the remaining spaces out of the results and adapt the probabilities
void filterSpaces();
// Pointer to the WERD_RES object owned by the API.
WERD_RES* word_res_;
// Iterator over the blob choices.
BLOB_CHOICE_IT* choice_it_;
std::vector<std::pair<const char*, float>>* LSTM_choices_ = nullptr;
std::vector<std::pair<const char*, float>>::iterator LSTM_choice_it_;
const int* tstep_index_;
bool LSTM_mode_ = false;
//true when there is lstm engine related trained data
bool oemLSTM_;
// true when there is legacy engine related trained data
bool oemLegacy_;
};
} // namespace tesseract.

View File

@ -604,11 +604,28 @@ char* ResultIterator::GetUTF8Text(PageIteratorLevel level) const {
strncpy(result, text.string(), length);
return result;
}
std::vector<std::vector<std::pair<const char*, float>>>*
ResultIterator::GetRawLSTMTimesteps() const {
if (it_->word() != nullptr) {
return &it_->word()->raw_timesteps;
} else {
return nullptr;
}
}
std::vector<std::vector<std::pair<const char*, float>>>*
ResultIterator::GetBestLSTMSymbolChoices() const {
if (it_->word() != nullptr) {
return &it_->word()->timesteps;
return &it_->word()->accumulated_timesteps;
} else {
return nullptr;
}
}
std::vector<std::vector<std::vector<std::pair<const char*, float>>>>*
ResultIterator::GetSegmentedLSTMTimesteps() const {
if (it_->word() != nullptr) {
return &it_->word()->symbol_steps;
} else {
return nullptr;
}

View File

@ -100,8 +100,12 @@ class TESS_API ResultIterator : public LTRResultIterator {
/**
* Returns the LSTM choices for every LSTM timestep for the current word.
*/
virtual std::vector<std::vector<std::pair<const char*, float>>>*
GetRawLSTMTimesteps() const;
virtual std::vector<std::vector<std::pair<const char*, float>>>*
GetBestLSTMSymbolChoices() const;
virtual std::vector<std::vector<std::vector<std::pair<const char*, float>>>>*
GetSegmentedLSTMTimesteps() const;
/**
* Return whether the current paragraph's dominant reading direction

View File

@ -526,7 +526,9 @@ Tesseract::Tesseract()
"Valid input values are 0, 1, 2 and 3. 0 is the default value. "
"With 1 the alternative symbol choices per timestep are included. "
"With 2 the alternative symbol choices are accumulated per "
"character. ",
"character. "
"With 3 the alternative symbol choices per timestep are included "
"and separated by the suggested segmentation of Tesseract",
this->params()),
backup_config_file_(nullptr),

View File

@ -1091,7 +1091,9 @@ class Tesseract : public Wordrec {
"Valid input values are 0, 1, 2 and 3. 0 is the default value. "
"With 1 the alternative symbol choices per timestep are included. "
"With 2 the alternative symbol choices are accumulated per "
"character. ");
"character. "
"With 3 the alternative symbol choices per timestep are included "
"and separated by the suggested segmentation of Tesseract");
//// ambigsrecog.cpp /////////////////////////////////////////////////////////
FILE* init_recog_training(const STRING& fname);

View File

@ -220,7 +220,12 @@ class WERD_RES : public ELIST_LINK {
// blob i and blob i+1.
GenericVector<int> blob_gaps;
// Stores the lstm choices of every timestep
std::vector<std::vector<std::pair<const char*, float>>> timesteps;
std::vector<std::vector<std::pair<const char*, float>>> raw_timesteps;
std::vector<std::vector<std::pair<const char*, float>>> accumulated_timesteps;
std::vector<std::vector<std::vector<std::pair<const char*, float>>>>
symbol_steps;
//Stores if the timestep vector starts with a space
bool leadingSpace = false;
// Ratings matrix contains classifier choices for each classified combination
// of blobs. The dimension is the same as the number of blobs in chopped_word
// and the leading diagonal corresponds to classifier results of the blobs

View File

@ -151,25 +151,6 @@ void destroy_nodes(LIST list, void_dest destructor) {
}
}
/**********************************************************************
* i n s e r t
*
* Create a list element and rearrange the pointers so that the first
* element in the list is the second argument.
**********************************************************************/
void insert(LIST list, void *node) {
LIST element;
if (list != NIL_LIST) {
element = push(NIL_LIST, node);
set_rest(element, list_rest(list));
set_rest(list, element);
node = first_node(list);
list->node = first_node(list_rest(list));
list->next->node = (LIST)node;
}
}
/**********************************************************************
* l a s t
*
@ -228,19 +209,6 @@ LIST push_last(LIST list, void *item) {
return (push(NIL_LIST, item));
}
/**********************************************************************
* r e v e r s e
*
* Create a new list with the elements reversed. The old list is not
* destroyed.
**********************************************************************/
LIST reverse(LIST list) {
LIST newlist = NIL_LIST;
iterate(list) copy_first(list, newlist);
return (newlist);
}
/**********************************************************************
* s e a r c h
*

View File

@ -38,10 +38,6 @@
* -----------------
* iterate - Macro to create a for loop to visit each cell.
*
* COPYING:
* -----------------
* reverse - (Deprecated) Creates a backwards copy of the input list.
*
* LIST CELL COUNTS:
* -----------------
* count - Returns the number of list cells in the list.
@ -50,8 +46,6 @@
* TRANSFORMS: (Note: These functions all modify the input list.)
* ----------
* delete_d - Removes the requested elements from the list.
* insert - (Deprecated) Add a new element into this spot in a list.
(not NIL_LIST)
* push_last - Add a new element onto the end of a list.
*
* SETS:
@ -130,8 +124,6 @@ LIST destroy(LIST list);
void destroy_nodes(LIST list, void_dest destructor);
void insert(LIST list, void *node);
LIST last(LIST var_list);
LIST pop(LIST list);
@ -140,8 +132,6 @@ LIST push(LIST list, void* element);
LIST push_last(LIST list, void* item);
LIST reverse(LIST list);
LIST search(LIST list, void* key, int_compare is_equal);
#endif

View File

@ -187,6 +187,7 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
GenericVector<const RecodeNode*> best_nodes;
GenericVector<const RecodeNode*> second_nodes;
std::deque<std::tuple<int, int>> best_choices;
std::deque<std::tuple<int, int>> best_choices_acc;
ExtractBestPaths(&best_nodes, &second_nodes);
if (debug) {
DebugPath(unicharset, best_nodes);
@ -196,15 +197,18 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
DebugUnicharPath(unicharset, second_nodes, unichar_ids, certs, ratings,
xcoords);
}
int timestepEnd= 0;
int timestepEndRaw = 0;
int timestepEnd = 0;
int timestepEnd_acc = 0;
//if lstm choice mode is required in granularity level 2 it stores the x
//Coordinates of every chosen character to match the alternative choices to it
if (lstm_choice_mode == 2) {
if (lstm_choice_mode) {
ExtractPathAsUnicharIds(best_nodes, &unichar_ids, &certs, &ratings,
&xcoords, &best_choices);
&xcoords, &best_choices, &best_choices_acc);
if (best_choices.size() > 0) {
timestepEnd = std::get<1>(best_choices.front());
best_choices.pop_front();
timestepEnd_acc = std::get<1>(best_choices_acc.front());
best_choices_acc.pop_front();
}
} else {
ExtractPathAsUnicharIds(best_nodes, &unichar_ids, &certs, &ratings,
@ -240,23 +244,22 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
WERD_RES* word_res = InitializeWord(
leading_space, line_box, word_start, word_end,
std::min(space_cert, prev_space_cert), unicharset, xcoords, scale_factor);
if (lstm_choice_mode == 1) {
for (size_t i = timestepEnd; i < xcoords[word_end]; i++) {
word_res->timesteps.push_back(timesteps[i]);
if (lstm_choice_mode) {
for (size_t i = timestepEndRaw; i < xcoords[word_end]; i++) {
word_res->raw_timesteps.push_back(timesteps[i]);
}
timestepEnd = xcoords[word_end];
} else if (lstm_choice_mode == 2){
timestepEndRaw = xcoords[word_end];
// Accumulated Timesteps (choice mode 2 processing)
float sum = 0;
std::vector<std::pair<const char*, float>> choice_pairs;
for (size_t i = timestepEnd; i < xcoords[word_end]; i++) {
for (size_t i = timestepEnd_acc; i < xcoords[word_end]; i++) {
for (std::pair<const char*, float> choice : timesteps[i]) {
if (std::strcmp(choice.first, "")) {
sum += choice.second;
choice_pairs.push_back(choice);
}
}
if ((best_choices.size() > 0 && i == std::get<1>(best_choices.front()) - 1)
if ((best_choices_acc.size() > 0 && i == std::get<1>(best_choices_acc.front()) - 1)
|| i == xcoords[word_end]-1) {
std::map<const char*, float> summed_propabilities;
for (auto & choice_pair : choice_pairs) {
@ -275,14 +278,32 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
std::pair<const char*,float>(summed_propability.first,
summed_propability.second));
}
if (best_choices.size() > 0) {
best_choices.pop_front();
if (best_choices_acc.size() > 0) {
best_choices_acc.pop_front();
}
choice_pairs.clear();
word_res->timesteps.push_back(accumulated_timestep);
word_res->accumulated_timesteps.push_back(accumulated_timestep);
sum = 0;
}
}
timestepEnd_acc = xcoords[word_end];
//Symbol Step (choice mode 3 processing)
std::vector<std::vector<std::pair<const char*, float>>> currentSymbol;
for (size_t i = timestepEnd; i < xcoords[word_end]; i++) {
if (i == std::get<1>(best_choices.front())) {
if (currentSymbol.size() > 0) {
word_res->symbol_steps.push_back(currentSymbol);
currentSymbol.clear();
}
const char* leadCharacter =
unicharset->id_to_unichar_ext(std::get<0>(best_choices.front()));
if (!strcmp(leadCharacter, " "))
word_res->leadingSpace = true;
if(best_choices.size()>1) best_choices.pop_front();
}
currentSymbol.push_back(timesteps[i]);
}
word_res->symbol_steps.push_back(currentSymbol);
timestepEnd = xcoords[word_end];
}
for (int i = word_start; i < word_end; ++i) {
@ -358,7 +379,8 @@ void RecodeBeamSearch::ExtractPathAsUnicharIds(
const GenericVector<const RecodeNode*>& best_nodes,
GenericVector<int>* unichar_ids, GenericVector<float>* certs,
GenericVector<float>* ratings, GenericVector<int>* xcoords,
std::deque<std::tuple<int, int>>* best_choices) {
std::deque<std::tuple<int, int>>* best_choices,
std::deque<std::tuple<int, int>>* best_choices_acc) {
unichar_ids->truncate(0);
certs->truncate(0);
ratings->truncate(0);
@ -412,6 +434,8 @@ void RecodeBeamSearch::ExtractPathAsUnicharIds(
if (best_choices != nullptr) {
best_choices->push_back(
std::tuple<int, int>(id, tposition));
best_choices_acc->push_back(
std::tuple<int, int>(id, tposition));
}
}
xcoords->push_back(width);

View File

@ -282,7 +282,8 @@ class RecodeBeamSearch {
const GenericVector<const RecodeNode*>& best_nodes,
GenericVector<int>* unichar_ids, GenericVector<float>* certs,
GenericVector<float>* ratings, GenericVector<int>* xcoords,
std::deque<std::tuple<int, int>>* best_choices = nullptr);
std::deque<std::tuple<int, int>>* best_choices = nullptr,
std::deque<std::tuple<int, int>>* best_choices_acc = nullptr);
// Sets up a word with the ratings matrix and fake blobs with boxes in the
// right places.