Merge pull request #2001 from stweil/files

unittest: Add more files from Google
This commit is contained in:
zdenop 2018-10-18 19:15:17 +02:00 committed by GitHub
commit 8ab17da6f9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 239 additions and 0 deletions

168
unittest/lstm_test.h Normal file
View File

@ -0,0 +1,168 @@
#ifndef TESSERACT_UNITTEST_LSTM_TEST_H_
#define TESSERACT_UNITTEST_LSTM_TEST_H_
#include <memory>
#include <string>
#include <utility>
#include "base/logging.h"
#include "base/stringprintf.h"
#include "file/base/file.h"
#include "file/base/helpers.h"
#include "file/base/path.h"
#include "testing/base/public/googletest.h"
#include "testing/base/public/gunit.h"
#include "absl/strings/str_cat.h"
#include "tesseract/ccutil/unicharset.h"
#include "tesseract/lstm/functions.h"
#include "tesseract/lstm/lstmtrainer.h"
#include "tesseract/training/lang_model_helpers.h"
namespace tesseract {
#if DEBUG_DETAIL == 0
// Number of iterations to run all the trainers.
const int kTrainerIterations = 600;
// Number of iterations between accuracy checks.
const int kBatchIterations = 100;
#else
// Number of iterations to run all the trainers.
const int kTrainerIterations = 2;
// Number of iterations between accuracy checks.
const int kBatchIterations = 1;
#endif
// The fixture for testing LSTMTrainer.
class LSTMTrainerTest : public testing::Test {
protected:
LSTMTrainerTest() {}
string TestDataNameToPath(const string& name) {
return file::JoinPath(FLAGS_test_srcdir,
"tesseract/testdata/" + name);
}
void SetupTrainerEng(const string& network_spec, const string& model_name,
bool recode, bool adam) {
SetupTrainer(network_spec, model_name, "eng.unicharset",
"lstm_training.arial.lstmf", recode, adam, 5e-4, false);
}
void SetupTrainer(const string& network_spec, const string& model_name,
const string& unicharset_file, const string& lstmf_file,
bool recode, bool adam, double learning_rate,
bool layer_specific) {
constexpr char kLang[] = "eng"; // Exact value doesn't matter.
string unicharset_name = TestDataNameToPath(unicharset_file);
UNICHARSET unicharset;
ASSERT_TRUE(unicharset.load_from_file(unicharset_name.c_str(), false));
string script_dir = file::JoinPath(
FLAGS_test_srcdir, "tesseract/training/langdata");
GenericVector<STRING> words;
EXPECT_EQ(0, CombineLangModel(unicharset, script_dir, "", FLAGS_test_tmpdir,
kLang, !recode, words, words, words, false,
nullptr, nullptr));
string model_path = file::JoinPath(FLAGS_test_tmpdir, model_name);
string checkpoint_path = model_path + "_checkpoint";
trainer_.reset(new LSTMTrainer(nullptr, nullptr, nullptr, nullptr,
model_path.c_str(), checkpoint_path.c_str(),
0, 0));
trainer_->InitCharSet(file::JoinPath(FLAGS_test_tmpdir, kLang,
absl::StrCat(kLang, ".traineddata")));
int net_mode = adam ? NF_ADAM : 0;
// Adam needs a higher learning rate, due to not multiplying the effective
// rate by 1/(1-momentum).
if (adam) learning_rate *= 20.0;
if (layer_specific) net_mode |= NF_LAYER_SPECIFIC_LR;
EXPECT_TRUE(trainer_->InitNetwork(network_spec.c_str(), -1, net_mode, 0.1,
learning_rate, 0.9, 0.999));
GenericVector<STRING> filenames;
filenames.push_back(STRING(TestDataNameToPath(lstmf_file).c_str()));
EXPECT_TRUE(trainer_->LoadAllTrainingData(filenames, CS_SEQUENTIAL, false));
LOG(INFO) << "Setup network:" << model_name;
}
// Trains for a given number of iterations and returns the char error rate.
double TrainIterations(int max_iterations) {
int iteration = trainer_->training_iteration();
int iteration_limit = iteration + max_iterations;
double best_error = 100.0;
do {
STRING log_str;
int target_iteration = iteration + kBatchIterations;
// Train a few.
double mean_error = 0.0;
while (iteration < target_iteration && iteration < iteration_limit) {
trainer_->TrainOnLine(trainer_.get(), false);
iteration = trainer_->training_iteration();
mean_error += trainer_->LastSingleError(ET_CHAR_ERROR);
}
trainer_->MaintainCheckpoints(NULL, &log_str);
iteration = trainer_->training_iteration();
mean_error *= 100.0 / kBatchIterations;
LOG(INFO) << log_str.string();
LOG(INFO) << "Batch error = " << mean_error;
if (mean_error < best_error) best_error = mean_error;
} while (iteration < iteration_limit);
LOG(INFO) << "Trainer error rate = " << best_error;
return best_error;
}
// Tests for a given number of iterations and returns the char error rate.
double TestIterations(int max_iterations) {
CHECK_GT(max_iterations, 0);
int iteration = trainer_->sample_iteration();
double mean_error = 0.0;
int error_count = 0;
while (error_count < max_iterations) {
const ImageData& trainingdata =
*trainer_->mutable_training_data()->GetPageBySerial(iteration);
NetworkIO fwd_outputs, targets;
if (trainer_->PrepareForBackward(&trainingdata, &fwd_outputs, &targets) !=
UNENCODABLE) {
mean_error += trainer_->NewSingleError(ET_CHAR_ERROR);
++error_count;
}
trainer_->SetIteration(++iteration);
}
mean_error *= 100.0 / max_iterations;
LOG(INFO) << "Tester error rate = " << mean_error;
return mean_error;
}
// Tests that the current trainer_ can be converted to int mode and still gets
// within 1% of the error rate. Returns the increase in error from float to
// int.
double TestIntMode(int test_iterations) {
GenericVector<char> trainer_data;
EXPECT_TRUE(trainer_->SaveTrainingDump(NO_BEST_TRAINER, trainer_.get(),
&trainer_data));
// Get the error on the next few iterations in float mode.
double float_err = TestIterations(test_iterations);
// Restore the dump, convert to int and test error on that.
EXPECT_TRUE(trainer_->ReadTrainingDump(trainer_data, trainer_.get()));
trainer_->ConvertToInt();
double int_err = TestIterations(test_iterations);
EXPECT_LT(int_err, float_err + 1.0);
return int_err - float_err;
}
// Sets up a trainer with the given language and given recode+ctc condition.
// It then verifies that the given str encodes and decodes back to the same
// string.
void TestEncodeDecode(const string& lang, const string& str, bool recode) {
string unicharset_name = lang + ".unicharset";
SetupTrainer("[1,1,0,32 Lbx100 O1c1]", "bidi-lstm", unicharset_name,
"arialuni.kor.lstmf", recode, true, 5e-4, true);
GenericVector<int> labels;
EXPECT_TRUE(trainer_->EncodeString(str.c_str(), &labels));
STRING decoded = trainer_->DecodeLabels(labels);
string decoded_str(&decoded[0], decoded.length());
EXPECT_EQ(str, decoded_str);
}
// Calls TestEncodeDeode with both recode on and off.
void TestEncodeDecodeBoth(const string& lang, const string& str) {
TestEncodeDecode(lang, str, false);
TestEncodeDecode(lang, str, true);
}
std::unique_ptr<LSTMTrainer> trainer_;
};
} // namespace tesseract.
#endif // THIRD_PARTY_TESSERACT_UNITTEST_LSTM_TEST_H_

View File

@ -0,0 +1,71 @@
#ifndef TESSERACT_UNITTEST_NORMSTRNGS_TEST_H_
#define TESSERACT_UNITTEST_NORMSTRNGS_TEST_H_
#include <string>
#include <vector>
#include "base/stringprintf.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
#include "tesseract/ccutil/unichar.h"
namespace tesseract {
inline string CodepointList(const std::vector<char32>& str32) {
string result;
int total_chars = str32.size();
for (int i = 0; i < total_chars; ++i) {
StringAppendF(&result, "[%x]", str32[i]);
}
return result;
}
inline string PrintString32WithUnicodes(const string& str) {
std::vector<char32> str32 = UNICHAR::UTF8ToUTF32(str.c_str());
return absl::StrCat("\"", str, "\" ", CodepointList(str32));
}
inline string PrintStringVectorWithUnicodes(const std::vector<string>& glyphs) {
string result;
for (const auto& s : glyphs) {
absl::StrAppend(&result, "Glyph:", PrintString32WithUnicodes(s), "\n");
}
return result;
}
inline void ExpectGraphemeModeResults(const string& str, UnicodeNormMode u_mode,
int unicode_count, int glyph_count,
int grapheme_count,
const string& target_str) {
std::vector<string> glyphs;
EXPECT_TRUE(NormalizeCleanAndSegmentUTF8(
u_mode, OCRNorm::kNone, GraphemeNormMode::kIndividualUnicodes, true,
str.c_str(), &glyphs));
EXPECT_EQ(glyphs.size(), unicode_count)
<< PrintStringVectorWithUnicodes(glyphs);
EXPECT_EQ(target_str, absl::StrJoin(glyphs.begin(), glyphs.end(), ""));
EXPECT_TRUE(NormalizeCleanAndSegmentUTF8(u_mode, OCRNorm::kNone,
GraphemeNormMode::kGlyphSplit, true,
str.c_str(), &glyphs));
EXPECT_EQ(glyphs.size(), glyph_count)
<< PrintStringVectorWithUnicodes(glyphs);
EXPECT_EQ(target_str, absl::StrJoin(glyphs.begin(), glyphs.end(), ""));
EXPECT_TRUE(NormalizeCleanAndSegmentUTF8(u_mode, OCRNorm::kNone,
GraphemeNormMode::kCombined, true,
str.c_str(), &glyphs));
EXPECT_EQ(glyphs.size(), grapheme_count)
<< PrintStringVectorWithUnicodes(glyphs);
EXPECT_EQ(target_str, absl::StrJoin(glyphs.begin(), glyphs.end(), ""));
EXPECT_TRUE(NormalizeCleanAndSegmentUTF8(u_mode, OCRNorm::kNone,
GraphemeNormMode::kSingleString,
true, str.c_str(), &glyphs));
EXPECT_EQ(glyphs.size(), 1) << PrintStringVectorWithUnicodes(glyphs);
EXPECT_EQ(target_str, glyphs[0]);
string result;
EXPECT_TRUE(NormalizeUTF8String(
u_mode, OCRNorm::kNone, GraphemeNorm::kNormalize, str.c_str(), &result));
EXPECT_EQ(target_str, result);
}
} // namespace tesseract
#endif // TESSERACT_UNITTEST_NORMSTRNGS_TEST_H_