Merge pull request #2010 from stweil/lgtm

training: Don't hide global variables
This commit is contained in:
zdenop 2018-10-19 23:18:21 +02:00 committed by GitHub
commit 94b76263a0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -388,7 +388,7 @@ LABELEDLIST NewLabeledList(const char* Label) {
* samples by FontName and CharName. It then returns this * samples by FontName and CharName. It then returns this
* data structure. * data structure.
* @param file open text file to read samples from * @param file open text file to read samples from
* @param feature_defs * @param feature_definitions
* @param feature_name * @param feature_name
* @param max_samples * @param max_samples
* @param unicharset * @param unicharset
@ -396,7 +396,7 @@ LABELEDLIST NewLabeledList(const char* Label) {
* @return none * @return none
* @note Globals: none * @note Globals: none
*/ */
void ReadTrainingSamples(const FEATURE_DEFS_STRUCT& feature_defs, void ReadTrainingSamples(const FEATURE_DEFS_STRUCT& feature_definitions,
const char *feature_name, int max_samples, const char *feature_name, int max_samples,
UNICHARSET* unicharset, UNICHARSET* unicharset,
FILE* file, LIST* training_samples) { FILE* file, LIST* training_samples) {
@ -405,7 +405,8 @@ void ReadTrainingSamples(const FEATURE_DEFS_STRUCT& feature_defs,
LABELEDLIST char_sample; LABELEDLIST char_sample;
FEATURE_SET feature_samples; FEATURE_SET feature_samples;
CHAR_DESC char_desc; CHAR_DESC char_desc;
uint32_t feature_type = ShortNameToFeatureType(feature_defs, feature_name); uint32_t feature_type =
ShortNameToFeatureType(feature_definitions, feature_name);
// Zero out the font_sample_count for all the classes. // Zero out the font_sample_count for all the classes.
LIST it = *training_samples; LIST it = *training_samples;
@ -432,7 +433,7 @@ void ReadTrainingSamples(const FEATURE_DEFS_STRUCT& feature_defs,
char_sample = NewLabeledList(unichar); char_sample = NewLabeledList(unichar);
*training_samples = push(*training_samples, char_sample); *training_samples = push(*training_samples, char_sample);
} }
char_desc = ReadCharDescription(feature_defs, file); char_desc = ReadCharDescription(feature_definitions, file);
feature_samples = char_desc->FeatureSets[feature_type]; feature_samples = char_desc->FeatureSets[feature_type];
if (char_sample->font_sample_count < max_samples || max_samples <= 0) { if (char_sample->font_sample_count < max_samples || max_samples <= 0) {
char_sample->List = push(char_sample->List, feature_samples); char_sample->List = push(char_sample->List, feature_samples);
@ -538,7 +539,8 @@ CLUSTERER *SetUpForClustering(const FEATURE_DEFS_STRUCT &FeatureDefs,
/*------------------------------------------------------------------------*/ /*------------------------------------------------------------------------*/
void MergeInsignificantProtos(LIST ProtoList, const char* label, void MergeInsignificantProtos(LIST ProtoList, const char* label,
CLUSTERER* Clusterer, CLUSTERCONFIG* Config) { CLUSTERER* Clusterer,
CLUSTERCONFIG* clusterconfig) {
PROTOTYPE* Prototype; PROTOTYPE* Prototype;
bool debug = strcmp(FLAGS_test_ch.c_str(), label) == 0; bool debug = strcmp(FLAGS_test_ch.c_str(), label) == 0;
@ -586,7 +588,8 @@ void MergeInsignificantProtos(LIST ProtoList, const char* label,
} }
} }
// Mark significant those that now have enough samples. // Mark significant those that now have enough samples.
int min_samples = (int32_t) (Config->MinSamples * Clusterer->NumChar); int min_samples =
static_cast<int32_t>(clusterconfig->MinSamples * Clusterer->NumChar);
pProtoList = ProtoList; pProtoList = ProtoList;
iterate(pProtoList) { iterate(pProtoList) {
Prototype = (PROTOTYPE *) first_node (pProtoList); Prototype = (PROTOTYPE *) first_node (pProtoList);