Merge pull request #1997 from noahmetzger/master

Renamed GetGlyphConfidences() to GetChoices() and glyph_confidences t…
This commit is contained in:
zdenop 2018-10-17 18:45:40 +02:00 committed by GitHub
commit 9c2d1aad96
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 73 additions and 75 deletions

View File

@ -1560,8 +1560,8 @@ char* TessBaseAPI::GetHOCRText(ETEXT_DESC* monitor, int page_number) {
// Now, process the word...
std::vector<std::vector<std::pair<const char*, float>>>* confidencemap = nullptr;
if (tesseract_->glyph_confidences) {
confidencemap = res_it->GetGlyphConfidences();
if (tesseract_->lstm_choice_mode) {
confidencemap = res_it->GetChoices();
}
hocr_str += "\n <span class='ocrx_word'";
AddIdTohOCR(&hocr_str, "word", page_id, wcnt);
@ -1621,8 +1621,8 @@ char* TessBaseAPI::GetHOCRText(ETEXT_DESC* monitor, int page_number) {
} while (!res_it->Empty(RIL_BLOCK) && !res_it->IsAtBeginningOf(RIL_WORD));
if (italic) hocr_str += "</em>";
if (bold) hocr_str += "</strong>";
// If glyph confidence is required it is added here
if (tesseract_->glyph_confidences == 1 && confidencemap != nullptr) {
// If the lstm choice mode is required it is added here
if (tesseract_->lstm_choice_mode == 1 && confidencemap != nullptr) {
for (size_t i = 0; i < confidencemap->size(); i++) {
hocr_str += "\n <span class='ocrx_cinfo'";
AddIdTohOCR(&hocr_str, "timestep", page_id, wcnt, tcnt);
@ -1630,7 +1630,7 @@ char* TessBaseAPI::GetHOCRText(ETEXT_DESC* monitor, int page_number) {
std::vector<std::pair<const char*, float>> timestep = (*confidencemap)[i];
for (std::pair<const char*, float> conf : timestep) {
hocr_str += "<span class='ocr_glyph'";
AddIdTohOCR(&hocr_str, "glyph", page_id, wcnt, gcnt);
AddIdTohOCR(&hocr_str, "choice", page_id, wcnt, gcnt);
hocr_str.add_str_int(" title='x_confs ", int(conf.second * 100));
hocr_str += "'";
hocr_str += ">";
@ -1641,18 +1641,18 @@ char* TessBaseAPI::GetHOCRText(ETEXT_DESC* monitor, int page_number) {
hocr_str += "</span>";
tcnt++;
}
} else if (tesseract_->glyph_confidences == 2 && confidencemap != nullptr) {
} else if (tesseract_->lstm_choice_mode == 2 && confidencemap != nullptr) {
for (size_t i = 0; i < confidencemap->size(); i++) {
std::vector<std::pair<const char*, float>> timestep = (*confidencemap)[i];
if (timestep.size() > 0) {
hocr_str += "\n <span class='ocrx_cinfo'";
AddIdTohOCR(&hocr_str, "alternative_glyphs", page_id, wcnt, tcnt);
AddIdTohOCR(&hocr_str, "lstm_choices", page_id, wcnt, tcnt);
hocr_str += " chosen='";
hocr_str += timestep[0].first;
hocr_str += "'>";
for (size_t j = 1; j < timestep.size(); j++) {
hocr_str += "<span class='ocr_glyph'";
AddIdTohOCR(&hocr_str, "glyph", page_id, wcnt, gcnt);
AddIdTohOCR(&hocr_str, "choice", page_id, wcnt, gcnt);
hocr_str.add_str_int(" title='x_confs ", int(timestep[j].second * 100));
hocr_str += "'";
hocr_str += ">";

View File

@ -239,7 +239,7 @@ void Tesseract::LSTMRecognizeWord(const BLOCK& block, ROW *row, WERD_RES *word,
if (im_data == nullptr) return;
lstm_recognizer_->RecognizeLine(*im_data, true, classify_debug_level > 0,
kWorstDictCertainty / kCertaintyScale,
word_box, words, glyph_confidences);
word_box, words, lstm_choice_mode);
delete im_data;
SearchWords(words);
}

View File

@ -604,7 +604,7 @@ char* ResultIterator::GetUTF8Text(PageIteratorLevel level) const {
return result;
}
std::vector<std::vector<std::pair<const char*, float>>>* ResultIterator::GetGlyphConfidences() const {
std::vector<std::vector<std::pair<const char*, float>>>* ResultIterator::GetChoices() const {
if (it_->word() != nullptr) {
return &it_->word()->timesteps;
} else {

View File

@ -98,9 +98,9 @@ class TESS_API ResultIterator : public LTRResultIterator {
virtual char* GetUTF8Text(PageIteratorLevel level) const;
/**
* Returns the glyph confidences for every LSTM timestep for the current Word
* Returns the lstm choices for every LSTM timestep for the current Word
*/
virtual std::vector<std::vector<std::pair<const char*, float>>>* GetGlyphConfidences() const;
virtual std::vector<std::vector<std::pair<const char*, float>>>* GetChoices() const;
/**
* Return whether the current paragraph's dominant reading direction

View File

@ -514,12 +514,12 @@ Tesseract::Tesseract()
STRING_MEMBER(page_separator, "\f",
"Page separator (default is form feed control character)",
this->params()),
INT_MEMBER(glyph_confidences, 0,
"Allows to include glyph confidences in the hOCR output. "
"Valid input values are 0, 1 and 2. 0 is the default value. "
"With 1 the glyph confidences of all timesteps are included. "
"With 2 the glyph confidences are accumulated per charakter.",
this->params()),
INT_MEMBER(lstm_choice_mode, 0,
"Allows to include alternative symbols choices in the hOCR output. "
"Valid input values are 0, 1 and 2. 0 is the default value. "
"With 1 the alternative symbol choices per timestep are included. "
"With 2 the alternative symbol choices are accumulated per character.",
this->params()),
backup_config_file_(nullptr),
pix_binary_(nullptr),

View File

@ -1118,11 +1118,11 @@ class Tesseract : public Wordrec {
"Preserve multiple interword spaces");
STRING_VAR_H(page_separator, "\f",
"Page separator (default is form feed control character)");
INT_VAR_H(glyph_confidences, 0,
"Allows to include glyph confidences in the hOCR output. "
INT_VAR_H(lstm_choice_mode, 0,
"Allows to include alternative symbols choices in the hOCR output. "
"Valid input values are 0, 1 and 2. 0 is the default value. "
"With 1 the glyph confidences of all timesteps are included. "
"With 2 the glyph confidences are accumulated per charakter.");
"With 1 the alternative symbol choices per timestep are included. "
"With 2 the alternative symbol choices are accumulated per character.");
//// ambigsrecog.cpp /////////////////////////////////////////////////////////
FILE *init_recog_training(const STRING &fname);

View File

@ -220,7 +220,7 @@ class WERD_RES : public ELIST_LINK {
// Gaps between blobs in chopped_word. blob_gaps[i] is the gap between
// blob i and blob i+1.
GenericVector<int> blob_gaps;
// Stores the glyph confidences of every timestep of the lstm
// Stores the lstm choices of every timestep
std::vector<std::vector<std::pair<const char*, float>>> timesteps;
// Ratings matrix contains classifier choices for each classified combination
// of blobs. The dimension is the same as the number of blobs in chopped_word

View File

@ -173,7 +173,7 @@ void LSTMRecognizer::RecognizeLine(const ImageData& image_data, bool invert,
bool debug, double worst_dict_cert,
const TBOX& line_box,
PointerVector<WERD_RES>* words,
int glyph_confidences) {
int lstm_choice_mode) {
NetworkIO outputs;
float scale_factor;
NetworkIO inputs;
@ -185,10 +185,9 @@ void LSTMRecognizer::RecognizeLine(const ImageData& image_data, bool invert,
new RecodeBeamSearch(recoder_, null_char_, SimpleTextOutput(), dict_);
}
search_->Decode(outputs, kDictRatio, kCertOffset, worst_dict_cert,
&GetUnicharset(), glyph_confidences);
&GetUnicharset(), lstm_choice_mode);
search_->ExtractBestPathAsWords(line_box, scale_factor, debug,
&GetUnicharset(), words,
glyph_confidences);
&GetUnicharset(), words, lstm_choice_mode);
}
// Helper computes min and mean best results in the output.

View File

@ -184,8 +184,7 @@ class LSTMRecognizer {
// will be used in a dictionary word.
void RecognizeLine(const ImageData& image_data, bool invert, bool debug,
double worst_dict_cert, const TBOX& line_box,
PointerVector<WERD_RES>* words,
int glyph_confidences = 0);
PointerVector<WERD_RES>* words, int lstm_choice_mode = 0);
// Helper computes min and mean best results in the output.
void OutputStats(const NetworkIO& outputs,

View File

@ -81,17 +81,17 @@ RecodeBeamSearch::RecodeBeamSearch(const UnicharCompress& recoder,
// Decodes the set of network outputs, storing the lattice internally.
void RecodeBeamSearch::Decode(const NetworkIO& output, double dict_ratio,
double cert_offset, double worst_dict_cert,
const UNICHARSET* charset, int glyph_confidence) {
const UNICHARSET* charset, int lstm_choice_mode) {
beam_size_ = 0;
int width = output.Width();
if (glyph_confidence)
if (lstm_choice_mode)
timesteps.clear();
for (int t = 0; t < width; ++t) {
ComputeTopN(output.f(t), output.NumFeatures(), kBeamWidths[0]);
DecodeStep(output.f(t), t, dict_ratio, cert_offset, worst_dict_cert,
charset);
if (glyph_confidence) {
SaveMostCertainGlyphs(output.f(t), output.NumFeatures(), charset, t);
if (lstm_choice_mode) {
SaveMostCertainChoices(output.f(t), output.NumFeatures(), charset, t);
}
}
}
@ -107,33 +107,33 @@ void RecodeBeamSearch::Decode(const GENERIC_2D_ARRAY<float>& output,
}
}
void RecodeBeamSearch::SaveMostCertainGlyphs(const float* outputs,
void RecodeBeamSearch::SaveMostCertainChoices(const float* outputs,
int num_outputs,
const UNICHARSET* charset,
int xCoord) {
std::vector<std::pair<const char*, float>> glyphs;
std::vector<std::pair<const char*, float>> choices;
int pos = 0;
for (int i = 0; i < num_outputs; ++i) {
if (outputs[i] >= 0.01f) {
const char* charakter;
const char* character;
if (i + 2 >= num_outputs) {
charakter = "";
character = "";
} else if (i > 0) {
charakter = charset->id_to_unichar_ext(i + 2);
character = charset->id_to_unichar_ext(i + 2);
} else {
charakter = charset->id_to_unichar_ext(i);
character = charset->id_to_unichar_ext(i);
}
pos = 0;
//order the possible glyphs within one timestep
//order the possible choices within one timestep
//beginning with the most likely
while (glyphs.size() > pos && glyphs[pos].second > outputs[i]) {
while (choices.size() > pos && choices[pos].second > outputs[i]) {
pos++;
}
glyphs.insert(glyphs.begin() + pos,
std::pair<const char*, float>(charakter, outputs[i]));
choices.insert(choices.begin() + pos,
std::pair<const char*, float>(character, outputs[i]));
}
}
timesteps.push_back(glyphs);
timesteps.push_back(choices);
}
// Returns the best path as labels/scores/xcoords similar to simple CTC.
@ -179,7 +179,7 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
float scale_factor, bool debug,
const UNICHARSET* unicharset,
PointerVector<WERD_RES>* words,
int glyph_confidence) {
int lstm_choice_mode) {
words->truncate(0);
GenericVector<int> unichar_ids;
GenericVector<float> certs;
@ -187,7 +187,7 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
GenericVector<int> xcoords;
GenericVector<const RecodeNode*> best_nodes;
GenericVector<const RecodeNode*> second_nodes;
std::deque<std::pair<int,int>> best_glyphs;
std::deque<std::pair<int,int>> best_choices;
ExtractBestPaths(&best_nodes, &second_nodes);
if (debug) {
DebugPath(unicharset, best_nodes);
@ -199,15 +199,15 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
}
int current_char;
int timestepEnd = 0;
//if glyph confidence is required in granularity level 2 it stores the x
//Coordinates of every chosen character to match the alternative glyphs to it
if (glyph_confidence == 2) {
//if lstm choice mode is required in granularity level 2 it stores the x
//Coordinates of every chosen character to match the alternative choices to it
if (lstm_choice_mode == 2) {
ExtractPathAsUnicharIds(best_nodes, &unichar_ids, &certs, &ratings,
&xcoords, &best_glyphs);
if (best_glyphs.size() > 0) {
current_char = best_glyphs.front().first;
timestepEnd = best_glyphs.front().second;
best_glyphs.pop_front();
&xcoords, &best_choices);
if (best_choices.size() > 0) {
current_char = best_choices.front().first;
timestepEnd = best_choices.front().second;
best_choices.pop_front();
}
} else {
ExtractPathAsUnicharIds(best_nodes, &unichar_ids, &certs, &ratings,
@ -243,25 +243,25 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
WERD_RES* word_res = InitializeWord(
leading_space, line_box, word_start, word_end,
std::min(space_cert, prev_space_cert), unicharset, xcoords, scale_factor);
if (glyph_confidence == 1) {
if (lstm_choice_mode == 1) {
for (size_t i = timestepEnd; i < xcoords[word_end]; i++) {
word_res->timesteps.push_back(timesteps[i]);
}
timestepEnd = xcoords[word_end];
} else if (glyph_confidence == 2) {
} else if (lstm_choice_mode == 2) {
float sum = 0;
std::vector<std::pair<const char*, float>> glyph_pairs;
std::vector<std::pair<const char*, float>> choice_pairs;
for (size_t i = timestepEnd; i < xcoords[word_end]; i++) {
for (std::pair<const char*, float> glyph : timesteps[i]) {
if (std::strcmp(glyph.first, "") != 0) {
sum += glyph.second;
glyph_pairs.push_back(glyph);
for (std::pair<const char*, float> choice : timesteps[i]) {
if (std::strcmp(choice.first, "") != 0) {
sum += choice.second;
choice_pairs.push_back(choice);
}
}
if (best_glyphs.size() > 0 && i == best_glyphs.front().second-1
if (best_choices.size() > 0 && i == best_choices.front().second - 1
|| i == xcoords[word_end]-1) {
std::map<const char*, float> summed_propabilities;
for(auto it = glyph_pairs.begin(); it != glyph_pairs.end(); ++it) {
for (auto it = choice_pairs.begin(); it != choice_pairs.end(); ++it) {
summed_propabilities[it->first] += it->second;
}
std::vector<std::pair<const char*, float>> accumulated_timestep;
@ -282,11 +282,11 @@ void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box,
std::pair<const char*,float>(it->first,
it->second));
}
if (best_glyphs.size() > 0) {
current_char = best_glyphs.front().first;
best_glyphs.pop_front();
if (best_choices.size() > 0) {
current_char = best_choices.front().first;
best_choices.pop_front();
}
glyph_pairs.clear();
choice_pairs.clear();
word_res->timesteps.push_back(accumulated_timestep);
sum = 0;
}
@ -366,7 +366,7 @@ void RecodeBeamSearch::ExtractPathAsUnicharIds(
const GenericVector<const RecodeNode*>& best_nodes,
GenericVector<int>* unichar_ids, GenericVector<float>* certs,
GenericVector<float>* ratings, GenericVector<int>* xcoords,
std::deque<std::pair<int,int>>* best_glyphs) {
std::deque<std::pair<int, int>>* best_choices) {
unichar_ids->truncate(0);
certs->truncate(0);
ratings->truncate(0);
@ -395,8 +395,8 @@ void RecodeBeamSearch::ExtractPathAsUnicharIds(
}
unichar_ids->push_back(unichar_id);
xcoords->push_back(t);
if(best_glyphs != nullptr) {
best_glyphs->push_back(std::pair<int,int>(unichar_id,t));
if (best_choices != nullptr) {
best_choices->push_back(std::pair<int, int>(unichar_id, t));
}
do {
double cert = best_nodes[t++]->certainty;

View File

@ -186,7 +186,7 @@ class RecodeBeamSearch {
// If charset is not null, it enables detailed debugging of the beam search.
void Decode(const NetworkIO& output, double dict_ratio, double cert_offset,
double worst_dict_cert, const UNICHARSET* charset,
int glyph_confidence = 0);
int lstm_choice_mode = 0);
void Decode(const GENERIC_2D_ARRAY<float>& output, double dict_ratio,
double cert_offset, double worst_dict_cert,
const UNICHARSET* charset);
@ -206,7 +206,7 @@ class RecodeBeamSearch {
void ExtractBestPathAsWords(const TBOX& line_box, float scale_factor,
bool debug, const UNICHARSET* unicharset,
PointerVector<WERD_RES>* words,
int glyph_confidence = 0);
int lstm_choice_mode = 0);
// Generates debug output of the content of the beams after a Decode.
void DebugBeams(const UNICHARSET& unicharset) const;
@ -282,7 +282,7 @@ class RecodeBeamSearch {
const GenericVector<const RecodeNode*>& best_nodes,
GenericVector<int>* unichar_ids, GenericVector<float>* certs,
GenericVector<float>* ratings, GenericVector<int>* xcoords,
std::deque<std::pair<int,int>>* best_glyphs = nullptr);
std::deque<std::pair<int,int>>* best_choices = nullptr);
// Sets up a word with the ratings matrix and fake blobs with boxes in the
// right places.
@ -303,8 +303,8 @@ class RecodeBeamSearch {
double cert_offset, double worst_dict_cert,
const UNICHARSET* charset, bool debug = false);
//Saves the most certain glyphs for the current time-step
void SaveMostCertainGlyphs(const float* outputs, int num_outputs, const UNICHARSET* charset, int xCoord);
//Saves the most certain choices for the current time-step
void SaveMostCertainChoices(const float* outputs, int num_outputs, const UNICHARSET* charset, int xCoord);
// Adds to the appropriate beams the legal (according to recoder)
// continuations of context prev, which is from the given index to beams_,