mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-11-27 20:59:36 +08:00
doxygen
This commit is contained in:
parent
631730599d
commit
9f42f69782
@ -61,22 +61,28 @@ ConvNetCharClassifier::~ConvNetCharClassifier() {
|
||||
}
|
||||
}
|
||||
|
||||
// The main training function. Given a sample and a class ID the classifier
|
||||
// updates its parameters according to its learning algorithm. This function
|
||||
// is currently not implemented. TODO(ahmadab): implement end-2-end training
|
||||
/**
|
||||
* The main training function. Given a sample and a class ID the classifier
|
||||
* updates its parameters according to its learning algorithm. This function
|
||||
* is currently not implemented. TODO(ahmadab): implement end-2-end training
|
||||
*/
|
||||
bool ConvNetCharClassifier::Train(CharSamp *char_samp, int ClassID) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// A secondary function needed for training. Allows the trainer to set the
|
||||
// value of any train-time paramter. This function is currently not
|
||||
// implemented. TODO(ahmadab): implement end-2-end training
|
||||
/**
|
||||
* A secondary function needed for training. Allows the trainer to set the
|
||||
* value of any train-time paramter. This function is currently not
|
||||
* implemented. TODO(ahmadab): implement end-2-end training
|
||||
*/
|
||||
bool ConvNetCharClassifier::SetLearnParam(char *var_name, float val) {
|
||||
// TODO(ahmadab): implementation of parameter initializing.
|
||||
return false;
|
||||
}
|
||||
|
||||
// Folds the output of the NeuralNet using the loaded folding sets
|
||||
/**
|
||||
* Folds the output of the NeuralNet using the loaded folding sets
|
||||
*/
|
||||
void ConvNetCharClassifier::Fold() {
|
||||
// in case insensitive mode
|
||||
if (case_sensitive_ == false) {
|
||||
@ -125,8 +131,10 @@ void ConvNetCharClassifier::Fold() {
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the features of specified charsamp and feedforward the
|
||||
// specified nets
|
||||
/**
|
||||
* Compute the features of specified charsamp and feedforward the
|
||||
* specified nets
|
||||
*/
|
||||
bool ConvNetCharClassifier::RunNets(CharSamp *char_samp) {
|
||||
if (char_net_ == NULL) {
|
||||
fprintf(stderr, "Cube ERROR (ConvNetCharClassifier::RunNets): "
|
||||
@ -173,7 +181,9 @@ bool ConvNetCharClassifier::RunNets(CharSamp *char_samp) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// return the cost of being a char
|
||||
/**
|
||||
* return the cost of being a char
|
||||
*/
|
||||
int ConvNetCharClassifier::CharCost(CharSamp *char_samp) {
|
||||
if (RunNets(char_samp) == false) {
|
||||
return 0;
|
||||
@ -181,8 +191,10 @@ int ConvNetCharClassifier::CharCost(CharSamp *char_samp) {
|
||||
return CubeUtils::Prob2Cost(1.0f - net_output_[0]);
|
||||
}
|
||||
|
||||
// classifies a charsamp and returns an alternate list
|
||||
// of chars sorted by char costs
|
||||
/**
|
||||
* classifies a charsamp and returns an alternate list
|
||||
* of chars sorted by char costs
|
||||
*/
|
||||
CharAltList *ConvNetCharClassifier::Classify(CharSamp *char_samp) {
|
||||
// run the needed nets
|
||||
if (RunNets(char_samp) == false) {
|
||||
@ -207,7 +219,9 @@ CharAltList *ConvNetCharClassifier::Classify(CharSamp *char_samp) {
|
||||
return alt_list;
|
||||
}
|
||||
|
||||
// Set an external net (for training purposes)
|
||||
/**
|
||||
* Set an external net (for training purposes)
|
||||
*/
|
||||
void ConvNetCharClassifier::SetNet(tesseract::NeuralNet *char_net) {
|
||||
if (char_net_ != NULL) {
|
||||
delete char_net_;
|
||||
@ -216,8 +230,10 @@ void ConvNetCharClassifier::SetNet(tesseract::NeuralNet *char_net) {
|
||||
char_net_ = char_net;
|
||||
}
|
||||
|
||||
// This function will return true if the file does not exist.
|
||||
// But will fail if the it did not pass the sanity checks
|
||||
/**
|
||||
* This function will return true if the file does not exist.
|
||||
* But will fail if the it did not pass the sanity checks
|
||||
*/
|
||||
bool ConvNetCharClassifier::LoadFoldingSets(const string &data_file_path,
|
||||
const string &lang,
|
||||
LangModel *lang_mod) {
|
||||
@ -284,7 +300,9 @@ bool ConvNetCharClassifier::LoadFoldingSets(const string &data_file_path,
|
||||
return true;
|
||||
}
|
||||
|
||||
// Init the classifier provided a data-path and a language string
|
||||
/**
|
||||
* Init the classifier provided a data-path and a language string
|
||||
*/
|
||||
bool ConvNetCharClassifier::Init(const string &data_file_path,
|
||||
const string &lang,
|
||||
LangModel *lang_mod) {
|
||||
@ -308,9 +326,11 @@ bool ConvNetCharClassifier::Init(const string &data_file_path,
|
||||
return true;
|
||||
}
|
||||
|
||||
// Load the classifier's Neural Nets
|
||||
// This function will return true if the net file does not exist.
|
||||
// But will fail if the net did not pass the sanity checks
|
||||
/**
|
||||
* Load the classifier's Neural Nets
|
||||
* This function will return true if the net file does not exist.
|
||||
* But will fail if the net did not pass the sanity checks
|
||||
*/
|
||||
bool ConvNetCharClassifier::LoadNets(const string &data_file_path,
|
||||
const string &lang) {
|
||||
string char_net_file;
|
||||
|
Loading…
Reference in New Issue
Block a user