// (C) Copyright 2017, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include // for std::string #include "gmock/gmock.h" // for testing::ElementsAreArray #include "include_gunit.h" #include "lang_model_helpers.h" #include "log.h" // for LOG #include "lstmtrainer.h" #include "unicharset_training_utils.h" namespace tesseract { std::string TestDataNameToPath(const std::string &name) { return file::JoinPath(TESTING_DIR, name); } // This is an integration test that verifies that CombineLangModel works to // the extent that an LSTMTrainer can be initialized with the result, and it // can encode strings. More importantly, the test verifies that adding an extra // character to the unicharset does not change the encoding of strings. TEST(LangModelTest, AddACharacter) { constexpr char kTestString[] = "Simple ASCII string to encode !@#$%&"; constexpr char kTestStringRupees[] = "ASCII string with Rupee symbol ₹"; // Setup the arguments. std::string script_dir = LANGDATA_DIR; std::string eng_dir = file::JoinPath(script_dir, "eng"); std::string unicharset_path = TestDataNameToPath("eng_beam.unicharset"); UNICHARSET unicharset; EXPECT_TRUE(unicharset.load_from_file(unicharset_path.c_str())); std::string version_str = "TestVersion"; file::MakeTmpdir(); std::string output_dir = FLAGS_test_tmpdir; LOG(INFO) << "Output dir=" << output_dir << "\n"; std::string lang1 = "eng"; bool pass_through_recoder = false; // If these reads fail, we get a warning message and an empty list of words. std::vector words = split(ReadFile(file::JoinPath(eng_dir, "eng.wordlist")), '\n'); EXPECT_GT(words.size(), 0); std::vector puncs = split(ReadFile(file::JoinPath(eng_dir, "eng.punc")), '\n'); EXPECT_GT(puncs.size(), 0); std::vector numbers = split(ReadFile(file::JoinPath(eng_dir, "eng.numbers")), '\n'); EXPECT_GT(numbers.size(), 0); bool lang_is_rtl = false; // Generate the traineddata file. EXPECT_EQ(0, CombineLangModel(unicharset, script_dir, version_str, output_dir, lang1, pass_through_recoder, words, puncs, numbers, lang_is_rtl, nullptr, nullptr)); // Init a trainer with it, and encode kTestString. std::string traineddata1 = file::JoinPath(output_dir, lang1, lang1) + ".traineddata"; LSTMTrainer trainer1; trainer1.InitCharSet(traineddata1); std::vector labels1; EXPECT_TRUE(trainer1.EncodeString(kTestString, &labels1)); std::string test1_decoded = trainer1.DecodeLabels(labels1); std::string test1_str(&test1_decoded[0], test1_decoded.length()); LOG(INFO) << "Labels1=" << test1_str << "\n"; // Add a new character to the unicharset and try again. int size_before = unicharset.size(); unicharset.unichar_insert("₹"); SetupBasicProperties(/*report_errors*/ true, /*decompose (NFD)*/ false, &unicharset); EXPECT_EQ(size_before + 1, unicharset.size()); // Generate the traineddata file. std::string lang2 = "extended"; EXPECT_EQ(EXIT_SUCCESS, CombineLangModel(unicharset, script_dir, version_str, output_dir, lang2, pass_through_recoder, words, puncs, numbers, lang_is_rtl, nullptr, nullptr)); // Init a trainer with it, and encode kTestString. std::string traineddata2 = file::JoinPath(output_dir, lang2, lang2) + ".traineddata"; LSTMTrainer trainer2; trainer2.InitCharSet(traineddata2); std::vector labels2; EXPECT_TRUE(trainer2.EncodeString(kTestString, &labels2)); std::string test2_decoded = trainer2.DecodeLabels(labels2); std::string test2_str(&test2_decoded[0], test2_decoded.length()); LOG(INFO) << "Labels2=" << test2_str << "\n"; // encode kTestStringRupees. std::vector labels3; EXPECT_TRUE(trainer2.EncodeString(kTestStringRupees, &labels3)); std::string test3_decoded = trainer2.DecodeLabels(labels3); std::string test3_str(&test3_decoded[0], test3_decoded.length()); LOG(INFO) << "labels3=" << test3_str << "\n"; // Copy labels1 to a std::vector, renumbering the null char to match trainer2. // Since Tensor Flow's CTC implementation insists on having the null be the // last label, and we want to be compatible, null has to be renumbered when // we add a class. int null1 = trainer1.null_char(); int null2 = trainer2.null_char(); EXPECT_EQ(null1 + 1, null2); std::vector labels1_v(labels1.size()); for (unsigned i = 0; i < labels1.size(); ++i) { if (labels1[i] == null1) { labels1_v[i] = null2; } else { labels1_v[i] = labels1[i]; } } EXPECT_THAT(labels1_v, testing::ElementsAreArray(&labels2[0], labels2.size())); // To make sure we we are not cheating somehow, we can now encode the Rupee // symbol, which we could not do before. EXPECT_FALSE(trainer1.EncodeString(kTestStringRupees, &labels1)); EXPECT_TRUE(trainer2.EncodeString(kTestStringRupees, &labels2)); } // Same as above test, for hin instead of eng TEST(LangModelTest, AddACharacterHindi) { constexpr char kTestString[] = "हिन्दी में एक लाइन लिखें"; constexpr char kTestStringRupees[] = "हिंदी में रूपये का चिन्ह प्रयोग करें ₹१००.००"; // Setup the arguments. std::string script_dir = LANGDATA_DIR; std::string hin_dir = file::JoinPath(script_dir, "hin"); std::string unicharset_path = TestDataNameToPath("hin_beam.unicharset"); UNICHARSET unicharset; EXPECT_TRUE(unicharset.load_from_file(unicharset_path.c_str())); std::string version_str = "TestVersion"; file::MakeTmpdir(); std::string output_dir = FLAGS_test_tmpdir; LOG(INFO) << "Output dir=" << output_dir << "\n"; std::string lang1 = "hin"; bool pass_through_recoder = false; // If these reads fail, we get a warning message and an empty list of words. std::vector words = split(ReadFile(file::JoinPath(hin_dir, "hin.wordlist")), '\n'); EXPECT_GT(words.size(), 0); std::vector puncs = split(ReadFile(file::JoinPath(hin_dir, "hin.punc")), '\n'); EXPECT_GT(puncs.size(), 0); std::vector numbers = split(ReadFile(file::JoinPath(hin_dir, "hin.numbers")), '\n'); EXPECT_GT(numbers.size(), 0); bool lang_is_rtl = false; // Generate the traineddata file. EXPECT_EQ(0, CombineLangModel(unicharset, script_dir, version_str, output_dir, lang1, pass_through_recoder, words, puncs, numbers, lang_is_rtl, nullptr, nullptr)); // Init a trainer with it, and encode kTestString. std::string traineddata1 = file::JoinPath(output_dir, lang1, lang1) + ".traineddata"; LSTMTrainer trainer1; trainer1.InitCharSet(traineddata1); std::vector labels1; EXPECT_TRUE(trainer1.EncodeString(kTestString, &labels1)); std::string test1_decoded = trainer1.DecodeLabels(labels1); std::string test1_str(&test1_decoded[0], test1_decoded.length()); LOG(INFO) << "Labels1=" << test1_str << "\n"; // Add a new character to the unicharset and try again. int size_before = unicharset.size(); unicharset.unichar_insert("₹"); SetupBasicProperties(/*report_errors*/ true, /*decompose (NFD)*/ false, &unicharset); EXPECT_EQ(size_before + 1, unicharset.size()); // Generate the traineddata file. std::string lang2 = "extendedhin"; EXPECT_EQ(EXIT_SUCCESS, CombineLangModel(unicharset, script_dir, version_str, output_dir, lang2, pass_through_recoder, words, puncs, numbers, lang_is_rtl, nullptr, nullptr)); // Init a trainer with it, and encode kTestString. std::string traineddata2 = file::JoinPath(output_dir, lang2, lang2) + ".traineddata"; LSTMTrainer trainer2; trainer2.InitCharSet(traineddata2); std::vector labels2; EXPECT_TRUE(trainer2.EncodeString(kTestString, &labels2)); std::string test2_decoded = trainer2.DecodeLabels(labels2); std::string test2_str(&test2_decoded[0], test2_decoded.length()); LOG(INFO) << "Labels2=" << test2_str << "\n"; // encode kTestStringRupees. std::vector labels3; EXPECT_TRUE(trainer2.EncodeString(kTestStringRupees, &labels3)); std::string test3_decoded = trainer2.DecodeLabels(labels3); std::string test3_str(&test3_decoded[0], test3_decoded.length()); LOG(INFO) << "labels3=" << test3_str << "\n"; // Copy labels1 to a std::vector, renumbering the null char to match trainer2. // Since Tensor Flow's CTC implementation insists on having the null be the // last label, and we want to be compatible, null has to be renumbered when // we add a class. int null1 = trainer1.null_char(); int null2 = trainer2.null_char(); EXPECT_EQ(null1 + 1, null2); std::vector labels1_v(labels1.size()); for (unsigned i = 0; i < labels1.size(); ++i) { if (labels1[i] == null1) { labels1_v[i] = null2; } else { labels1_v[i] = labels1[i]; } } EXPECT_THAT(labels1_v, testing::ElementsAreArray(&labels2[0], labels2.size())); // To make sure we we are not cheating somehow, we can now encode the Rupee // symbol, which we could not do before. EXPECT_FALSE(trainer1.EncodeString(kTestStringRupees, &labels1)); EXPECT_TRUE(trainer2.EncodeString(kTestStringRupees, &labels2)); } } // namespace tesseract