/////////////////////////////////////////////////////////////////////// // File: lstm.cpp // Description: Long-term-short-term-memory Recurrent neural network. // Author: Ray Smith // Created: Wed May 01 17:43:06 PST 2013 // // (C) Copyright 2013, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "lstm.h" #ifdef _OPENMP #include #endif #include #include #include "fullyconnected.h" #include "functions.h" #include "networkscratch.h" #include "tprintf.h" // Macros for openmp code if it is available, otherwise empty macros. #ifdef _OPENMP #define PARALLEL_IF_OPENMP(__num_threads) \ PRAGMA(omp parallel if (__num_threads > 1) num_threads(__num_threads)) { \ PRAGMA(omp sections nowait) { \ PRAGMA(omp section) { #define SECTION_IF_OPENMP \ } \ PRAGMA(omp section) \ { #define END_PARALLEL_IF_OPENMP \ } \ } /* end of sections */ \ } /* end of parallel section */ // Define the portable PRAGMA macro. #ifdef _MSC_VER // Different _Pragma #define PRAGMA(x) __pragma(x) #else #define PRAGMA(x) _Pragma(#x) #endif // _MSC_VER #else // _OPENMP #define PARALLEL_IF_OPENMP(__num_threads) #define SECTION_IF_OPENMP #define END_PARALLEL_IF_OPENMP #endif // _OPENMP namespace tesseract { // Max absolute value of state_. It is reasonably high to enable the state // to count things. const double kStateClip = 100.0; // Max absolute value of gate_errors (the gradients). const double kErrClip = 1.0f; LSTM::LSTM(const STRING& name, int ni, int ns, int no, bool two_dimensional, NetworkType type) : Network(type, name, ni, no), na_(ni + ns), ns_(ns), nf_(0), is_2d_(two_dimensional), softmax_(NULL), input_width_(0) { if (two_dimensional) na_ += ns_; if (type_ == NT_LSTM || type_ == NT_LSTM_SUMMARY) { nf_ = 0; // networkbuilder ensures this is always true. ASSERT_HOST(no == ns); } else if (type_ == NT_LSTM_SOFTMAX || type_ == NT_LSTM_SOFTMAX_ENCODED) { nf_ = type_ == NT_LSTM_SOFTMAX ? no_ : IntCastRounded(ceil(log2(no_))); softmax_ = new FullyConnected("LSTM Softmax", ns_, no_, NT_SOFTMAX); } else { tprintf("%d is invalid type of LSTM!\n", type); ASSERT_HOST(false); } na_ += nf_; } LSTM::~LSTM() { delete softmax_; } // Returns the shape output from the network given an input shape (which may // be partially unknown ie zero). StaticShape LSTM::OutputShape(const StaticShape& input_shape) const { StaticShape result = input_shape; result.set_depth(no_); if (type_ == NT_LSTM_SUMMARY) result.set_width(1); if (softmax_ != NULL) return softmax_->OutputShape(result); return result; } // Suspends/Enables training by setting the training_ flag. Serialize and // DeSerialize only operate on the run-time data if state is false. void LSTM::SetEnableTraining(TrainingState state) { if (state == TS_RE_ENABLE) { if (training_ == TS_DISABLED) { for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; gate_weights_[w].InitBackward(false); } } training_ = TS_ENABLED; } else { training_ = state; } if (softmax_ != NULL) softmax_->SetEnableTraining(state); } // Sets up the network for training. Initializes weights using weights of // scale `range` picked according to the random number generator `randomizer`. int LSTM::InitWeights(float range, TRand* randomizer) { Network::SetRandomizer(randomizer); num_weights_ = 0; for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; num_weights_ += gate_weights_[w].InitWeightsFloat( ns_, na_ + 1, TestFlag(NF_ADA_GRAD), range, randomizer); } if (softmax_ != NULL) { num_weights_ += softmax_->InitWeights(range, randomizer); } return num_weights_; } // Converts a float network to an int network. void LSTM::ConvertToInt() { for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; gate_weights_[w].ConvertToInt(); } if (softmax_ != NULL) { softmax_->ConvertToInt(); } } // Sets up the network for training using the given weight_range. void LSTM::DebugWeights() { for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; STRING msg = name_; msg.add_str_int(" Gate weights ", w); gate_weights_[w].Debug2D(msg.string()); } if (softmax_ != NULL) { softmax_->DebugWeights(); } } // Writes to the given file. Returns false in case of error. bool LSTM::Serialize(TFile* fp) const { if (!Network::Serialize(fp)) return false; if (fp->FWrite(&na_, sizeof(na_), 1) != 1) return false; for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; if (!gate_weights_[w].Serialize(IsTraining(), fp)) return false; } if (softmax_ != NULL && !softmax_->Serialize(fp)) return false; return true; } // Reads from the given file. Returns false in case of error. bool LSTM::DeSerialize(TFile* fp) { if (fp->FReadEndian(&na_, sizeof(na_), 1) != 1) return false; if (type_ == NT_LSTM_SOFTMAX) { nf_ = no_; } else if (type_ == NT_LSTM_SOFTMAX_ENCODED) { nf_ = IntCastRounded(ceil(log2(no_))); } else { nf_ = 0; } is_2d_ = false; for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; if (!gate_weights_[w].DeSerialize(IsTraining(), fp)) return false; if (w == CI) { ns_ = gate_weights_[CI].NumOutputs(); is_2d_ = na_ - nf_ == ni_ + 2 * ns_; } } delete softmax_; if (type_ == NT_LSTM_SOFTMAX || type_ == NT_LSTM_SOFTMAX_ENCODED) { softmax_ = reinterpret_cast(Network::CreateFromFile(fp)); if (softmax_ == nullptr) return false; } else { softmax_ = nullptr; } return true; } // Runs forward propagation of activations on the input line. // See NetworkCpp for a detailed discussion of the arguments. void LSTM::Forward(bool debug, const NetworkIO& input, const TransposedArray* input_transpose, NetworkScratch* scratch, NetworkIO* output) { input_map_ = input.stride_map(); input_width_ = input.Width(); if (softmax_ != NULL) output->ResizeFloat(input, no_); else if (type_ == NT_LSTM_SUMMARY) output->ResizeXTo1(input, no_); else output->Resize(input, no_); ResizeForward(input); // Temporary storage of forward computation for each gate. NetworkScratch::FloatVec temp_lines[WT_COUNT]; for (int i = 0; i < WT_COUNT; ++i) temp_lines[i].Init(ns_, scratch); // Single timestep buffers for the current/recurrent output and state. NetworkScratch::FloatVec curr_state, curr_output; curr_state.Init(ns_, scratch); ZeroVector(ns_, curr_state); curr_output.Init(ns_, scratch); ZeroVector(ns_, curr_output); // Rotating buffers of width buf_width allow storage of the state and output // for the other dimension, used only when working in true 2D mode. The width // is enough to hold an entire strip of the major direction. int buf_width = Is2D() ? input_map_.Size(FD_WIDTH) : 1; GenericVector states, outputs; if (Is2D()) { states.init_to_size(buf_width, NetworkScratch::FloatVec()); outputs.init_to_size(buf_width, NetworkScratch::FloatVec()); for (int i = 0; i < buf_width; ++i) { states[i].Init(ns_, scratch); ZeroVector(ns_, states[i]); outputs[i].Init(ns_, scratch); ZeroVector(ns_, outputs[i]); } } // Used only if a softmax LSTM. NetworkScratch::FloatVec softmax_output; NetworkScratch::IO int_output; if (softmax_ != NULL) { softmax_output.Init(no_, scratch); ZeroVector(no_, softmax_output); if (input.int_mode()) int_output.Resize2d(true, 1, ns_, scratch); softmax_->SetupForward(input, NULL); } NetworkScratch::FloatVec curr_input; curr_input.Init(na_, scratch); StrideMap::Index src_index(input_map_); // Used only by NT_LSTM_SUMMARY. StrideMap::Index dest_index(output->stride_map()); do { int t = src_index.t(); // True if there is a valid old state for the 2nd dimension. bool valid_2d = Is2D(); if (valid_2d) { StrideMap::Index dim_index(src_index); if (!dim_index.AddOffset(-1, FD_HEIGHT)) valid_2d = false; } // Index of the 2-D revolving buffers (outputs, states). int mod_t = Modulo(t, buf_width); // Current timestep. // Setup the padded input in source. source_.CopyTimeStepGeneral(t, 0, ni_, input, t, 0); if (softmax_ != NULL) { source_.WriteTimeStepPart(t, ni_, nf_, softmax_output); } source_.WriteTimeStepPart(t, ni_ + nf_, ns_, curr_output); if (Is2D()) source_.WriteTimeStepPart(t, ni_ + nf_ + ns_, ns_, outputs[mod_t]); if (!source_.int_mode()) source_.ReadTimeStep(t, curr_input); // Matrix multiply the inputs with the source. PARALLEL_IF_OPENMP(GFS) // It looks inefficient to create the threads on each t iteration, but the // alternative of putting the parallel outside the t loop, a single around // the t-loop and then tasks in place of the sections is a *lot* slower. // Cell inputs. if (source_.int_mode()) gate_weights_[CI].MatrixDotVector(source_.i(t), temp_lines[CI]); else gate_weights_[CI].MatrixDotVector(curr_input, temp_lines[CI]); FuncInplace(ns_, temp_lines[CI]); SECTION_IF_OPENMP // Input Gates. if (source_.int_mode()) gate_weights_[GI].MatrixDotVector(source_.i(t), temp_lines[GI]); else gate_weights_[GI].MatrixDotVector(curr_input, temp_lines[GI]); FuncInplace(ns_, temp_lines[GI]); SECTION_IF_OPENMP // 1-D forget gates. if (source_.int_mode()) gate_weights_[GF1].MatrixDotVector(source_.i(t), temp_lines[GF1]); else gate_weights_[GF1].MatrixDotVector(curr_input, temp_lines[GF1]); FuncInplace(ns_, temp_lines[GF1]); // 2-D forget gates. if (Is2D()) { if (source_.int_mode()) gate_weights_[GFS].MatrixDotVector(source_.i(t), temp_lines[GFS]); else gate_weights_[GFS].MatrixDotVector(curr_input, temp_lines[GFS]); FuncInplace(ns_, temp_lines[GFS]); } SECTION_IF_OPENMP // Output gates. if (source_.int_mode()) gate_weights_[GO].MatrixDotVector(source_.i(t), temp_lines[GO]); else gate_weights_[GO].MatrixDotVector(curr_input, temp_lines[GO]); FuncInplace(ns_, temp_lines[GO]); END_PARALLEL_IF_OPENMP // Apply forget gate to state. MultiplyVectorsInPlace(ns_, temp_lines[GF1], curr_state); if (Is2D()) { // Max-pool the forget gates (in 2-d) instead of blindly adding. inT8* which_fg_col = which_fg_[t]; memset(which_fg_col, 1, ns_ * sizeof(which_fg_col[0])); if (valid_2d) { const double* stepped_state = states[mod_t]; for (int i = 0; i < ns_; ++i) { if (temp_lines[GF1][i] < temp_lines[GFS][i]) { curr_state[i] = temp_lines[GFS][i] * stepped_state[i]; which_fg_col[i] = 2; } } } } MultiplyAccumulate(ns_, temp_lines[CI], temp_lines[GI], curr_state); // Clip curr_state to a sane range. ClipVector(ns_, -kStateClip, kStateClip, curr_state); if (IsTraining()) { // Save the gate node values. node_values_[CI].WriteTimeStep(t, temp_lines[CI]); node_values_[GI].WriteTimeStep(t, temp_lines[GI]); node_values_[GF1].WriteTimeStep(t, temp_lines[GF1]); node_values_[GO].WriteTimeStep(t, temp_lines[GO]); if (Is2D()) node_values_[GFS].WriteTimeStep(t, temp_lines[GFS]); } FuncMultiply(curr_state, temp_lines[GO], ns_, curr_output); if (IsTraining()) state_.WriteTimeStep(t, curr_state); if (softmax_ != NULL) { if (input.int_mode()) { int_output->WriteTimeStep(0, curr_output); softmax_->ForwardTimeStep(NULL, int_output->i(0), t, softmax_output); } else { softmax_->ForwardTimeStep(curr_output, NULL, t, softmax_output); } output->WriteTimeStep(t, softmax_output); if (type_ == NT_LSTM_SOFTMAX_ENCODED) { CodeInBinary(no_, nf_, softmax_output); } } else if (type_ == NT_LSTM_SUMMARY) { // Output only at the end of a row. if (src_index.IsLast(FD_WIDTH)) { output->WriteTimeStep(dest_index.t(), curr_output); dest_index.Increment(); } } else { output->WriteTimeStep(t, curr_output); } // Save states for use by the 2nd dimension only if needed. if (Is2D()) { CopyVector(ns_, curr_state, states[mod_t]); CopyVector(ns_, curr_output, outputs[mod_t]); } // Always zero the states at the end of every row, but only for the major // direction. The 2-D state remains intact. if (src_index.IsLast(FD_WIDTH)) { ZeroVector(ns_, curr_state); ZeroVector(ns_, curr_output); } } while (src_index.Increment()); #if DEBUG_DETAIL > 0 tprintf("Source:%s\n", name_.string()); source_.Print(10); tprintf("State:%s\n", name_.string()); state_.Print(10); tprintf("Output:%s\n", name_.string()); output->Print(10); #endif if (debug) DisplayForward(*output); } // Runs backward propagation of errors on the deltas line. // See NetworkCpp for a detailed discussion of the arguments. bool LSTM::Backward(bool debug, const NetworkIO& fwd_deltas, NetworkScratch* scratch, NetworkIO* back_deltas) { if (debug) DisplayBackward(fwd_deltas); back_deltas->ResizeToMap(fwd_deltas.int_mode(), input_map_, ni_); // ======Scratch space.====== // Output errors from deltas with recurrence from sourceerr. NetworkScratch::FloatVec outputerr; outputerr.Init(ns_, scratch); // Recurrent error in the state/source. NetworkScratch::FloatVec curr_stateerr, curr_sourceerr; curr_stateerr.Init(ns_, scratch); curr_sourceerr.Init(na_, scratch); ZeroVector(ns_, curr_stateerr); ZeroVector(na_, curr_sourceerr); // Errors in the gates. NetworkScratch::FloatVec gate_errors[WT_COUNT]; for (int g = 0; g < WT_COUNT; ++g) gate_errors[g].Init(ns_, scratch); // Rotating buffers of width buf_width allow storage of the recurrent time- // steps used only for true 2-D. Stores one full strip of the major direction. int buf_width = Is2D() ? input_map_.Size(FD_WIDTH) : 1; GenericVector stateerr, sourceerr; if (Is2D()) { stateerr.init_to_size(buf_width, NetworkScratch::FloatVec()); sourceerr.init_to_size(buf_width, NetworkScratch::FloatVec()); for (int t = 0; t < buf_width; ++t) { stateerr[t].Init(ns_, scratch); sourceerr[t].Init(na_, scratch); ZeroVector(ns_, stateerr[t]); ZeroVector(na_, sourceerr[t]); } } // Parallel-generated sourceerr from each of the gates. NetworkScratch::FloatVec sourceerr_temps[WT_COUNT]; for (int w = 0; w < WT_COUNT; ++w) sourceerr_temps[w].Init(na_, scratch); int width = input_width_; // Transposed gate errors stored over all timesteps for sum outer. NetworkScratch::GradientStore gate_errors_t[WT_COUNT]; for (int w = 0; w < WT_COUNT; ++w) { gate_errors_t[w].Init(ns_, width, scratch); } // Used only if softmax_ != NULL. NetworkScratch::FloatVec softmax_errors; NetworkScratch::GradientStore softmax_errors_t; if (softmax_ != NULL) { softmax_errors.Init(no_, scratch); softmax_errors_t.Init(no_, width, scratch); } double state_clip = Is2D() ? 9.0 : 4.0; #if DEBUG_DETAIL > 1 tprintf("fwd_deltas:%s\n", name_.string()); fwd_deltas.Print(10); #endif StrideMap::Index dest_index(input_map_); dest_index.InitToLast(); // Used only by NT_LSTM_SUMMARY. StrideMap::Index src_index(fwd_deltas.stride_map()); src_index.InitToLast(); do { int t = dest_index.t(); bool at_last_x = dest_index.IsLast(FD_WIDTH); // up_pos is the 2-D back step, down_pos is the 2-D fwd step, and are only // valid if >= 0, which is true if 2d and not on the top/bottom. int up_pos = -1; int down_pos = -1; if (Is2D()) { if (dest_index.index(FD_HEIGHT) > 0) { StrideMap::Index up_index(dest_index); if (up_index.AddOffset(-1, FD_HEIGHT)) up_pos = up_index.t(); } if (!dest_index.IsLast(FD_HEIGHT)) { StrideMap::Index down_index(dest_index); if (down_index.AddOffset(1, FD_HEIGHT)) down_pos = down_index.t(); } } // Index of the 2-D revolving buffers (sourceerr, stateerr). int mod_t = Modulo(t, buf_width); // Current timestep. // Zero the state in the major direction only at the end of every row. if (at_last_x) { ZeroVector(na_, curr_sourceerr); ZeroVector(ns_, curr_stateerr); } // Setup the outputerr. if (type_ == NT_LSTM_SUMMARY) { if (dest_index.IsLast(FD_WIDTH)) { fwd_deltas.ReadTimeStep(src_index.t(), outputerr); src_index.Decrement(); } else { ZeroVector(ns_, outputerr); } } else if (softmax_ == NULL) { fwd_deltas.ReadTimeStep(t, outputerr); } else { softmax_->BackwardTimeStep(fwd_deltas, t, softmax_errors, softmax_errors_t.get(), outputerr); } if (!at_last_x) AccumulateVector(ns_, curr_sourceerr + ni_ + nf_, outputerr); if (down_pos >= 0) AccumulateVector(ns_, sourceerr[mod_t] + ni_ + nf_ + ns_, outputerr); // Apply the 1-d forget gates. if (!at_last_x) { const float* next_node_gf1 = node_values_[GF1].f(t + 1); for (int i = 0; i < ns_; ++i) { curr_stateerr[i] *= next_node_gf1[i]; } } if (Is2D() && t + 1 < width) { for (int i = 0; i < ns_; ++i) { if (which_fg_[t + 1][i] != 1) curr_stateerr[i] = 0.0; } if (down_pos >= 0) { const float* right_node_gfs = node_values_[GFS].f(down_pos); const double* right_stateerr = stateerr[mod_t]; for (int i = 0; i < ns_; ++i) { if (which_fg_[down_pos][i] == 2) { curr_stateerr[i] += right_stateerr[i] * right_node_gfs[i]; } } } } state_.FuncMultiply3Add(node_values_[GO], t, outputerr, curr_stateerr); // Clip stateerr_ to a sane range. ClipVector(ns_, -state_clip, state_clip, curr_stateerr); #if DEBUG_DETAIL > 1 if (t + 10 > width) { tprintf("t=%d, stateerr=", t); for (int i = 0; i < ns_; ++i) tprintf(" %g,%g,%g", curr_stateerr[i], outputerr[i], curr_sourceerr[ni_ + nf_ + i]); tprintf("\n"); } #endif // Matrix multiply to get the source errors. PARALLEL_IF_OPENMP(GFS) // Cell inputs. node_values_[CI].FuncMultiply3(t, node_values_[GI], t, curr_stateerr, gate_errors[CI]); ClipVector(ns_, -kErrClip, kErrClip, gate_errors[CI].get()); gate_weights_[CI].VectorDotMatrix(gate_errors[CI], sourceerr_temps[CI]); gate_errors_t[CI].get()->WriteStrided(t, gate_errors[CI]); SECTION_IF_OPENMP // Input Gates. node_values_[GI].FuncMultiply3(t, node_values_[CI], t, curr_stateerr, gate_errors[GI]); ClipVector(ns_, -kErrClip, kErrClip, gate_errors[GI].get()); gate_weights_[GI].VectorDotMatrix(gate_errors[GI], sourceerr_temps[GI]); gate_errors_t[GI].get()->WriteStrided(t, gate_errors[GI]); SECTION_IF_OPENMP // 1-D forget Gates. if (t > 0) { node_values_[GF1].FuncMultiply3(t, state_, t - 1, curr_stateerr, gate_errors[GF1]); ClipVector(ns_, -kErrClip, kErrClip, gate_errors[GF1].get()); gate_weights_[GF1].VectorDotMatrix(gate_errors[GF1], sourceerr_temps[GF1]); } else { memset(gate_errors[GF1], 0, ns_ * sizeof(gate_errors[GF1][0])); memset(sourceerr_temps[GF1], 0, na_ * sizeof(*sourceerr_temps[GF1])); } gate_errors_t[GF1].get()->WriteStrided(t, gate_errors[GF1]); // 2-D forget Gates. if (up_pos >= 0) { node_values_[GFS].FuncMultiply3(t, state_, up_pos, curr_stateerr, gate_errors[GFS]); ClipVector(ns_, -kErrClip, kErrClip, gate_errors[GFS].get()); gate_weights_[GFS].VectorDotMatrix(gate_errors[GFS], sourceerr_temps[GFS]); } else { memset(gate_errors[GFS], 0, ns_ * sizeof(gate_errors[GFS][0])); memset(sourceerr_temps[GFS], 0, na_ * sizeof(*sourceerr_temps[GFS])); } if (Is2D()) gate_errors_t[GFS].get()->WriteStrided(t, gate_errors[GFS]); SECTION_IF_OPENMP // Output gates. state_.Func2Multiply3(node_values_[GO], t, outputerr, gate_errors[GO]); ClipVector(ns_, -kErrClip, kErrClip, gate_errors[GO].get()); gate_weights_[GO].VectorDotMatrix(gate_errors[GO], sourceerr_temps[GO]); gate_errors_t[GO].get()->WriteStrided(t, gate_errors[GO]); END_PARALLEL_IF_OPENMP SumVectors(na_, sourceerr_temps[CI], sourceerr_temps[GI], sourceerr_temps[GF1], sourceerr_temps[GO], sourceerr_temps[GFS], curr_sourceerr); back_deltas->WriteTimeStep(t, curr_sourceerr); // Save states for use by the 2nd dimension only if needed. if (Is2D()) { CopyVector(ns_, curr_stateerr, stateerr[mod_t]); CopyVector(na_, curr_sourceerr, sourceerr[mod_t]); } } while (dest_index.Decrement()); #if DEBUG_DETAIL > 2 for (int w = 0; w < WT_COUNT; ++w) { tprintf("%s gate errors[%d]\n", name_.string(), w); gate_errors_t[w].get()->PrintUnTransposed(10); } #endif // Transposed source_ used to speed-up SumOuter. NetworkScratch::GradientStore source_t, state_t; source_t.Init(na_, width, scratch); source_.Transpose(source_t.get()); state_t.Init(ns_, width, scratch); state_.Transpose(state_t.get()); #ifdef _OPENMP #pragma omp parallel for num_threads(GFS) if (!Is2D()) #endif for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; gate_weights_[w].SumOuterTransposed(*gate_errors_t[w], *source_t, false); } if (softmax_ != NULL) { softmax_->FinishBackward(*softmax_errors_t); } if (needs_to_backprop_) { // Normalize the inputerr in back_deltas. back_deltas->CopyWithNormalization(*back_deltas, fwd_deltas); return true; } return false; } // Updates the weights using the given learning rate and momentum. // num_samples is the quotient to be used in the adagrad computation iff // use_ada_grad_ is true. void LSTM::Update(float learning_rate, float momentum, int num_samples) { #if DEBUG_DETAIL > 3 PrintW(); #endif for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; gate_weights_[w].Update(learning_rate, momentum, num_samples); } if (softmax_ != NULL) { softmax_->Update(learning_rate, momentum, num_samples); } #if DEBUG_DETAIL > 3 PrintDW(); #endif } // Sums the products of weight updates in *this and other, splitting into // positive (same direction) in *same and negative (different direction) in // *changed. void LSTM::CountAlternators(const Network& other, double* same, double* changed) const { ASSERT_HOST(other.type() == type_); const LSTM* lstm = reinterpret_cast(&other); for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; gate_weights_[w].CountAlternators(lstm->gate_weights_[w], same, changed); } if (softmax_ != NULL) { softmax_->CountAlternators(*lstm->softmax_, same, changed); } } // Prints the weights for debug purposes. void LSTM::PrintW() { tprintf("Weight state:%s\n", name_.string()); for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; tprintf("Gate %d, inputs\n", w); for (int i = 0; i < ni_; ++i) { tprintf("Row %d:", i); for (int s = 0; s < ns_; ++s) tprintf(" %g", gate_weights_[w].GetWeights(s)[i]); tprintf("\n"); } tprintf("Gate %d, outputs\n", w); for (int i = ni_; i < ni_ + ns_; ++i) { tprintf("Row %d:", i - ni_); for (int s = 0; s < ns_; ++s) tprintf(" %g", gate_weights_[w].GetWeights(s)[i]); tprintf("\n"); } tprintf("Gate %d, bias\n", w); for (int s = 0; s < ns_; ++s) tprintf(" %g", gate_weights_[w].GetWeights(s)[na_]); tprintf("\n"); } } // Prints the weight deltas for debug purposes. void LSTM::PrintDW() { tprintf("Delta state:%s\n", name_.string()); for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; tprintf("Gate %d, inputs\n", w); for (int i = 0; i < ni_; ++i) { tprintf("Row %d:", i); for (int s = 0; s < ns_; ++s) tprintf(" %g", gate_weights_[w].GetDW(s, i)); tprintf("\n"); } tprintf("Gate %d, outputs\n", w); for (int i = ni_; i < ni_ + ns_; ++i) { tprintf("Row %d:", i - ni_); for (int s = 0; s < ns_; ++s) tprintf(" %g", gate_weights_[w].GetDW(s, i)); tprintf("\n"); } tprintf("Gate %d, bias\n", w); for (int s = 0; s < ns_; ++s) tprintf(" %g", gate_weights_[w].GetDW(s, na_)); tprintf("\n"); } } // Resizes forward data to cope with an input image of the given width. void LSTM::ResizeForward(const NetworkIO& input) { source_.Resize(input, na_); which_fg_.ResizeNoInit(input.Width(), ns_); if (IsTraining()) { state_.ResizeFloat(input, ns_); for (int w = 0; w < WT_COUNT; ++w) { if (w == GFS && !Is2D()) continue; node_values_[w].ResizeFloat(input, ns_); } } } } // namespace tesseract.