/////////////////////////////////////////////////////////////////////// // File: language_model.cpp // Description: Functions that utilize the knowledge about the properties, // structure and statistics of the language to help recognition. // Author: Daria Antonova // Created: Mon Nov 11 11:26:43 PST 2009 // // (C) Copyright 2009, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include #include "language_model.h" #include "dawg.h" #include "freelist.h" #include "intproto.h" #include "helpers.h" #include "lm_state.h" #include "lm_pain_points.h" #include "matrix.h" #include "params.h" #include "params_training_featdef.h" #if defined(_MSC_VER) || defined(ANDROID) double log2(double n) { return log(n) / log(2.0); } #endif // _MSC_VER namespace tesseract { const float LanguageModel::kMaxAvgNgramCost = 25.0f; LanguageModel::LanguageModel(const UnicityTable *fontinfo_table, Dict *dict) : INT_MEMBER(language_model_debug_level, 0, "Language model debug level", dict->getCCUtil()->params()), BOOL_INIT_MEMBER(language_model_ngram_on, false, "Turn on/off the use of character ngram model", dict->getCCUtil()->params()), INT_MEMBER(language_model_ngram_order, 8, "Maximum order of the character ngram model", dict->getCCUtil()->params()), INT_MEMBER(language_model_viterbi_list_max_num_prunable, 10, "Maximum number of prunable (those for which" " PrunablePath() is true) entries in each viterbi list" " recorded in BLOB_CHOICEs", dict->getCCUtil()->params()), INT_MEMBER(language_model_viterbi_list_max_size, 500, "Maximum size of viterbi lists recorded in BLOB_CHOICEs", dict->getCCUtil()->params()), double_MEMBER(language_model_ngram_small_prob, 0.000001, "To avoid overly small denominators use this as the " "floor of the probability returned by the ngram model.", dict->getCCUtil()->params()), double_MEMBER(language_model_ngram_nonmatch_score, -40.0, "Average classifier score of a non-matching unichar.", dict->getCCUtil()->params()), BOOL_MEMBER(language_model_ngram_use_only_first_uft8_step, false, "Use only the first UTF8 step of the given string" " when computing log probabilities.", dict->getCCUtil()->params()), double_MEMBER(language_model_ngram_scale_factor, 0.03, "Strength of the character ngram model relative to the" " character classifier ", dict->getCCUtil()->params()), double_MEMBER(language_model_ngram_rating_factor, 16.0, "Factor to bring log-probs into the same range as ratings" " when multiplied by outline length ", dict->getCCUtil()->params()), BOOL_MEMBER(language_model_ngram_space_delimited_language, true, "Words are delimited by space", dict->getCCUtil()->params()), INT_MEMBER(language_model_min_compound_length, 3, "Minimum length of compound words", dict->getCCUtil()->params()), double_MEMBER(language_model_penalty_non_freq_dict_word, 0.1, "Penalty for words not in the frequent word dictionary", dict->getCCUtil()->params()), double_MEMBER(language_model_penalty_non_dict_word, 0.15, "Penalty for non-dictionary words", dict->getCCUtil()->params()), double_MEMBER(language_model_penalty_punc, 0.2, "Penalty for inconsistent punctuation", dict->getCCUtil()->params()), double_MEMBER(language_model_penalty_case, 0.1, "Penalty for inconsistent case", dict->getCCUtil()->params()), double_MEMBER(language_model_penalty_script, 0.5, "Penalty for inconsistent script", dict->getCCUtil()->params()), double_MEMBER(language_model_penalty_chartype, 0.3, "Penalty for inconsistent character type", dict->getCCUtil()->params()), // TODO(daria, rays): enable font consistency checking // after improving font analysis. double_MEMBER(language_model_penalty_font, 0.00, "Penalty for inconsistent font", dict->getCCUtil()->params()), double_MEMBER(language_model_penalty_spacing, 0.05, "Penalty for inconsistent spacing", dict->getCCUtil()->params()), double_MEMBER(language_model_penalty_increment, 0.01, "Penalty increment", dict->getCCUtil()->params()), INT_MEMBER(wordrec_display_segmentations, 0, "Display Segmentations", dict->getCCUtil()->params()), BOOL_INIT_MEMBER(language_model_use_sigmoidal_certainty, false, "Use sigmoidal score for certainty", dict->getCCUtil()->params()), fontinfo_table_(fontinfo_table), dict_(dict), fixed_pitch_(false), max_char_wh_ratio_(0.0), acceptable_choice_found_(false) { ASSERT_HOST(dict_ != NULL); dawg_args_ = new DawgArgs(NULL, new DawgPositionVector(), NO_PERM); very_beginning_active_dawgs_ = new DawgPositionVector(); beginning_active_dawgs_ = new DawgPositionVector(); } LanguageModel::~LanguageModel() { delete very_beginning_active_dawgs_; delete beginning_active_dawgs_; delete dawg_args_->updated_dawgs; delete dawg_args_; } void LanguageModel::InitForWord(const WERD_CHOICE *prev_word, bool fixed_pitch, float max_char_wh_ratio, float rating_cert_scale) { fixed_pitch_ = fixed_pitch; max_char_wh_ratio_ = max_char_wh_ratio; rating_cert_scale_ = rating_cert_scale; acceptable_choice_found_ = false; correct_segmentation_explored_ = false; // Initialize vectors with beginning DawgInfos. very_beginning_active_dawgs_->clear(); dict_->init_active_dawgs(very_beginning_active_dawgs_, false); beginning_active_dawgs_->clear(); dict_->default_dawgs(beginning_active_dawgs_, false); // Fill prev_word_str_ with the last language_model_ngram_order // unichars from prev_word. if (language_model_ngram_on) { if (prev_word != NULL && prev_word->unichar_string() != NULL) { prev_word_str_ = prev_word->unichar_string(); if (language_model_ngram_space_delimited_language) prev_word_str_ += ' '; } else { prev_word_str_ = " "; } const char *str_ptr = prev_word_str_.string(); const char *str_end = str_ptr + prev_word_str_.length(); int step; prev_word_unichar_step_len_ = 0; while (str_ptr != str_end && (step = UNICHAR::utf8_step(str_ptr))) { str_ptr += step; ++prev_word_unichar_step_len_; } ASSERT_HOST(str_ptr == str_end); } } // Helper scans the collection of predecessors for competing siblings that // have the same letter with the opposite case, setting competing_vse. static void ScanParentsForCaseMix(const UNICHARSET& unicharset, LanguageModelState* parent_node) { if (parent_node == NULL) return; ViterbiStateEntry_IT vit(&parent_node->viterbi_state_entries); for (vit.mark_cycle_pt(); !vit.cycled_list(); vit.forward()) { ViterbiStateEntry* vse = vit.data(); vse->competing_vse = NULL; UNICHAR_ID unichar_id = vse->curr_b->unichar_id(); if (unicharset.get_isupper(unichar_id) || unicharset.get_islower(unichar_id)) { UNICHAR_ID other_case = unicharset.get_other_case(unichar_id); if (other_case == unichar_id) continue; // Not in unicharset. // Find other case in same list. There could be multiple entries with // the same unichar_id, but in theory, they should all point to the // same BLOB_CHOICE, and that is what we will be using to decide // which to keep. ViterbiStateEntry_IT vit2(&parent_node->viterbi_state_entries); for (vit2.mark_cycle_pt(); !vit2.cycled_list() && vit2.data()->curr_b->unichar_id() != other_case; vit2.forward()) {} if (!vit2.cycled_list()) { vse->competing_vse = vit2.data(); } } } } // Helper returns true if the given choice has a better case variant before // it in the choice_list that is not distinguishable by size. static bool HasBetterCaseVariant(const UNICHARSET& unicharset, const BLOB_CHOICE* choice, BLOB_CHOICE_LIST* choices) { UNICHAR_ID choice_id = choice->unichar_id(); UNICHAR_ID other_case = unicharset.get_other_case(choice_id); if (other_case == choice_id || other_case == INVALID_UNICHAR_ID) return false; // Not upper or lower or not in unicharset. if (unicharset.SizesDistinct(choice_id, other_case)) return false; // Can be separated by size. BLOB_CHOICE_IT bc_it(choices); for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) { BLOB_CHOICE* better_choice = bc_it.data(); if (better_choice->unichar_id() == other_case) return true; // Found an earlier instance of other_case. else if (better_choice == choice) return false; // Reached the original choice. } return false; // Should never happen, but just in case. } // UpdateState has the job of combining the ViterbiStateEntry lists on each // of the choices on parent_list with each of the blob choices in curr_list, // making a new ViterbiStateEntry for each sensible path. // This could be a huge set of combinations, creating a lot of work only to // be truncated by some beam limit, but only certain kinds of paths will // continue at the next step: // paths that are liked by the language model: either a DAWG or the n-gram // model, where active. // paths that represent some kind of top choice. The old permuter permuted // the top raw classifier score, the top upper case word and the top lower- // case word. UpdateState now concentrates its top-choice paths on top // lower-case, top upper-case (or caseless alpha), and top digit sequence, // with allowance for continuation of these paths through blobs where such // a character does not appear in the choices list. // GetNextParentVSE enforces some of these models to minimize the number of // calls to AddViterbiStateEntry, even prior to looking at the language model. // Thus an n-blob sequence of [l1I] will produce 3n calls to // AddViterbiStateEntry instead of 3^n. // Of course it isn't quite that simple as Title Case is handled by allowing // lower case to continue an upper case initial, but it has to be detected // in the combiner so it knows which upper case letters are initial alphas. bool LanguageModel::UpdateState( bool just_classified, int curr_col, int curr_row, BLOB_CHOICE_LIST *curr_list, LanguageModelState *parent_node, LMPainPoints *pain_points, WERD_RES *word_res, BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle) { if (language_model_debug_level > 0) { tprintf("\nUpdateState: col=%d row=%d %s", curr_col, curr_row, just_classified ? "just_classified" : ""); if (language_model_debug_level > 5) tprintf("(parent=%p)\n", parent_node); else tprintf("\n"); } // Initialize helper variables. bool word_end = (curr_row+1 >= word_res->ratings->dimension()); bool new_changed = false; float denom = (language_model_ngram_on) ? ComputeDenom(curr_list) : 1.0f; const UNICHARSET& unicharset = dict_->getUnicharset(); BLOB_CHOICE *first_lower = NULL; BLOB_CHOICE *first_upper = NULL; BLOB_CHOICE *first_digit = NULL; bool has_alnum_mix = false; if (parent_node != NULL) { int result = SetTopParentLowerUpperDigit(parent_node); if (result < 0) { if (language_model_debug_level > 0) tprintf("No parents found to process\n"); return false; } if (result > 0) has_alnum_mix = true; } if (!GetTopLowerUpperDigit(curr_list, &first_lower, &first_upper, &first_digit)) has_alnum_mix = false;; ScanParentsForCaseMix(unicharset, parent_node); if (language_model_debug_level > 3 && parent_node != NULL) { parent_node->Print("Parent viterbi list"); } LanguageModelState *curr_state = best_choice_bundle->beam[curr_row]; // Call AddViterbiStateEntry() for each parent+child ViterbiStateEntry. ViterbiStateEntry_IT vit; BLOB_CHOICE_IT c_it(curr_list); for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) { BLOB_CHOICE* choice = c_it.data(); // TODO(antonova): make sure commenting this out if ok for ngram // model scoring (I think this was introduced to fix ngram model quirks). // Skip NULL unichars unless it is the only choice. //if (!curr_list->singleton() && c_it.data()->unichar_id() == 0) continue; UNICHAR_ID unichar_id = choice->unichar_id(); if (unicharset.get_fragment(unichar_id)) { continue; // Skip fragments. } // Set top choice flags. LanguageModelFlagsType blob_choice_flags = kXhtConsistentFlag; if (c_it.at_first() || !new_changed) blob_choice_flags |= kSmallestRatingFlag; if (first_lower == choice) blob_choice_flags |= kLowerCaseFlag; if (first_upper == choice) blob_choice_flags |= kUpperCaseFlag; if (first_digit == choice) blob_choice_flags |= kDigitFlag; if (parent_node == NULL) { // Process the beginning of a word. // If there is a better case variant that is not distinguished by size, // skip this blob choice, as we have no choice but to accept the result // of the character classifier to distinguish between them, even if // followed by an upper case. // With words like iPoc, and other CamelBackWords, the lower-upper // transition can only be achieved if the classifier has the correct case // as the top choice, and leaving an initial I lower down the list // increases the chances of choosing IPoc simply because it doesn't // include such a transition. iPoc will beat iPOC and ipoc because // the other words are baseline/x-height inconsistent. if (HasBetterCaseVariant(unicharset, choice, curr_list)) continue; // Upper counts as lower at the beginning of a word. if (blob_choice_flags & kUpperCaseFlag) blob_choice_flags |= kLowerCaseFlag; new_changed |= AddViterbiStateEntry( blob_choice_flags, denom, word_end, curr_col, curr_row, choice, curr_state, NULL, pain_points, word_res, best_choice_bundle, blamer_bundle); } else { // Get viterbi entries from each parent ViterbiStateEntry. vit.set_to_list(&parent_node->viterbi_state_entries); int vit_counter = 0; vit.mark_cycle_pt(); ViterbiStateEntry* parent_vse = NULL; LanguageModelFlagsType top_choice_flags; while ((parent_vse = GetNextParentVSE(just_classified, has_alnum_mix, c_it.data(), blob_choice_flags, unicharset, word_res, &vit, &top_choice_flags)) != NULL) { // Skip pruned entries and do not look at prunable entries if already // examined language_model_viterbi_list_max_num_prunable of those. if (PrunablePath(*parent_vse) && (++vit_counter > language_model_viterbi_list_max_num_prunable || (language_model_ngram_on && parent_vse->ngram_info->pruned))) { continue; } // If the parent has no alnum choice, (ie choice is the first in a // string of alnum), and there is a better case variant that is not // distinguished by size, skip this blob choice/parent, as with the // initial blob treatment above. if (!parent_vse->HasAlnumChoice(unicharset) && HasBetterCaseVariant(unicharset, choice, curr_list)) continue; // Create a new ViterbiStateEntry if BLOB_CHOICE in c_it.data() // looks good according to the Dawgs or character ngram model. new_changed |= AddViterbiStateEntry( top_choice_flags, denom, word_end, curr_col, curr_row, c_it.data(), curr_state, parent_vse, pain_points, word_res, best_choice_bundle, blamer_bundle); } } } return new_changed; } // Finds the first lower and upper case letter and first digit in curr_list. // For non-upper/lower languages, alpha counts as upper. // Uses the first character in the list in place of empty results. // Returns true if both alpha and digits are found. bool LanguageModel::GetTopLowerUpperDigit(BLOB_CHOICE_LIST *curr_list, BLOB_CHOICE **first_lower, BLOB_CHOICE **first_upper, BLOB_CHOICE **first_digit) const { BLOB_CHOICE_IT c_it(curr_list); const UNICHARSET &unicharset = dict_->getUnicharset(); BLOB_CHOICE *first_unichar = NULL; for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) { UNICHAR_ID unichar_id = c_it.data()->unichar_id(); if (unicharset.get_fragment(unichar_id)) continue; // skip fragments if (first_unichar == NULL) first_unichar = c_it.data(); if (*first_lower == NULL && unicharset.get_islower(unichar_id)) { *first_lower = c_it.data(); } if (*first_upper == NULL && unicharset.get_isalpha(unichar_id) && !unicharset.get_islower(unichar_id)) { *first_upper = c_it.data(); } if (*first_digit == NULL && unicharset.get_isdigit(unichar_id)) { *first_digit = c_it.data(); } } ASSERT_HOST(first_unichar != NULL); bool mixed = (*first_lower != NULL || *first_upper != NULL) && *first_digit != NULL; if (*first_lower == NULL) *first_lower = first_unichar; if (*first_upper == NULL) *first_upper = first_unichar; if (*first_digit == NULL) *first_digit = first_unichar; return mixed; } // Forces there to be at least one entry in the overall set of the // viterbi_state_entries of each element of parent_node that has the // top_choice_flag set for lower, upper and digit using the same rules as // GetTopLowerUpperDigit, setting the flag on the first found suitable // candidate, whether or not the flag is set on some other parent. // Returns 1 if both alpha and digits are found among the parents, -1 if no // parents are found at all (a legitimate case), and 0 otherwise. int LanguageModel::SetTopParentLowerUpperDigit( LanguageModelState *parent_node) const { if (parent_node == NULL) return -1; UNICHAR_ID top_id = INVALID_UNICHAR_ID; ViterbiStateEntry* top_lower = NULL; ViterbiStateEntry* top_upper = NULL; ViterbiStateEntry* top_digit = NULL; ViterbiStateEntry* top_choice = NULL; float lower_rating = 0.0f; float upper_rating = 0.0f; float digit_rating = 0.0f; float top_rating = 0.0f; const UNICHARSET &unicharset = dict_->getUnicharset(); ViterbiStateEntry_IT vit(&parent_node->viterbi_state_entries); for (vit.mark_cycle_pt(); !vit.cycled_list(); vit.forward()) { ViterbiStateEntry* vse = vit.data(); // INVALID_UNICHAR_ID should be treated like a zero-width joiner, so scan // back to the real character if needed. ViterbiStateEntry* unichar_vse = vse; UNICHAR_ID unichar_id = unichar_vse->curr_b->unichar_id(); float rating = unichar_vse->curr_b->rating(); while (unichar_id == INVALID_UNICHAR_ID && unichar_vse->parent_vse != NULL) { unichar_vse = unichar_vse->parent_vse; unichar_id = unichar_vse->curr_b->unichar_id(); rating = unichar_vse->curr_b->rating(); } if (unichar_id != INVALID_UNICHAR_ID) { if (unicharset.get_islower(unichar_id)) { if (top_lower == NULL || lower_rating > rating) { top_lower = vse; lower_rating = rating; } } else if (unicharset.get_isalpha(unichar_id)) { if (top_upper == NULL || upper_rating > rating) { top_upper = vse; upper_rating = rating; } } else if (unicharset.get_isdigit(unichar_id)) { if (top_digit == NULL || digit_rating > rating) { top_digit = vse; digit_rating = rating; } } } if (top_choice == NULL || top_rating > rating) { top_choice = vse; top_rating = rating; top_id = unichar_id; } } if (top_choice == NULL) return -1; bool mixed = (top_lower != NULL || top_upper != NULL) && top_digit != NULL; if (top_lower == NULL) top_lower = top_choice; top_lower->top_choice_flags |= kLowerCaseFlag; if (top_upper == NULL) top_upper = top_choice; top_upper->top_choice_flags |= kUpperCaseFlag; if (top_digit == NULL) top_digit = top_choice; top_digit->top_choice_flags |= kDigitFlag; top_choice->top_choice_flags |= kSmallestRatingFlag; if (top_id != INVALID_UNICHAR_ID && dict_->compound_marker(top_id) && (top_choice->top_choice_flags & (kLowerCaseFlag | kUpperCaseFlag | kDigitFlag))) { // If the compound marker top choice carries any of the top alnum flags, // then give it all of them, allowing words like I-295 to be chosen. top_choice->top_choice_flags |= kLowerCaseFlag | kUpperCaseFlag | kDigitFlag; } return mixed ? 1 : 0; } // Finds the next ViterbiStateEntry with which the given unichar_id can // combine sensibly, taking into account any mixed alnum/mixed case // situation, and whether this combination has been inspected before. ViterbiStateEntry* LanguageModel::GetNextParentVSE( bool just_classified, bool mixed_alnum, const BLOB_CHOICE* bc, LanguageModelFlagsType blob_choice_flags, const UNICHARSET& unicharset, WERD_RES* word_res, ViterbiStateEntry_IT* vse_it, LanguageModelFlagsType* top_choice_flags) const { for (; !vse_it->cycled_list(); vse_it->forward()) { ViterbiStateEntry* parent_vse = vse_it->data(); // Only consider the parent if it has been updated or // if the current ratings cell has just been classified. if (!just_classified && !parent_vse->updated) continue; if (language_model_debug_level > 2) parent_vse->Print("Considering"); // If the parent is non-alnum, then upper counts as lower. *top_choice_flags = blob_choice_flags; if ((blob_choice_flags & kUpperCaseFlag) && !parent_vse->HasAlnumChoice(unicharset)) { *top_choice_flags |= kLowerCaseFlag; } *top_choice_flags &= parent_vse->top_choice_flags; UNICHAR_ID unichar_id = bc->unichar_id(); const BLOB_CHOICE* parent_b = parent_vse->curr_b; UNICHAR_ID parent_id = parent_b->unichar_id(); // Digits do not bind to alphas if there is a mix in both parent and current // or if the alpha is not the top choice. if (unicharset.get_isdigit(unichar_id) && unicharset.get_isalpha(parent_id) && (mixed_alnum || *top_choice_flags == 0)) continue; // Digits don't bind to alphas. // Likewise alphas do not bind to digits if there is a mix in both or if // the digit is not the top choice. if (unicharset.get_isalpha(unichar_id) && unicharset.get_isdigit(parent_id) && (mixed_alnum || *top_choice_flags == 0)) continue; // Alphas don't bind to digits. // If there is a case mix of the same alpha in the parent list, then // competing_vse is non-null and will be used to determine whether // or not to bind the current blob choice. if (parent_vse->competing_vse != NULL) { const BLOB_CHOICE* competing_b = parent_vse->competing_vse->curr_b; UNICHAR_ID other_id = competing_b->unichar_id(); if (language_model_debug_level >= 5) { tprintf("Parent %s has competition %s\n", unicharset.id_to_unichar(parent_id), unicharset.id_to_unichar(other_id)); } if (unicharset.SizesDistinct(parent_id, other_id)) { // If other_id matches bc wrt position and size, and parent_id, doesn't, // don't bind to the current parent. if (bc->PosAndSizeAgree(*competing_b, word_res->x_height, language_model_debug_level >= 5) && !bc->PosAndSizeAgree(*parent_b, word_res->x_height, language_model_debug_level >= 5)) continue; // Competing blobchoice has a better vertical match. } } vse_it->forward(); return parent_vse; // This one is good! } return NULL; // Ran out of possibilities. } bool LanguageModel::AddViterbiStateEntry( LanguageModelFlagsType top_choice_flags, float denom, bool word_end, int curr_col, int curr_row, BLOB_CHOICE *b, LanguageModelState *curr_state, ViterbiStateEntry *parent_vse, LMPainPoints *pain_points, WERD_RES *word_res, BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle) { ViterbiStateEntry_IT vit; if (language_model_debug_level > 1) { tprintf("AddViterbiStateEntry for unichar %s rating=%.4f" " certainty=%.4f top_choice_flags=0x%x", dict_->getUnicharset().id_to_unichar(b->unichar_id()), b->rating(), b->certainty(), top_choice_flags); if (language_model_debug_level > 5) tprintf(" parent_vse=%p\n", parent_vse); else tprintf("\n"); } // Check whether the list is full. if (curr_state != NULL && curr_state->viterbi_state_entries_length >= language_model_viterbi_list_max_size) { if (language_model_debug_level > 1) { tprintf("AddViterbiStateEntry: viterbi list is full!\n"); } return false; } // Invoke Dawg language model component. LanguageModelDawgInfo *dawg_info = GenerateDawgInfo(word_end, curr_col, curr_row, *b, parent_vse); float outline_length = AssociateUtils::ComputeOutlineLength(rating_cert_scale_, *b); // Invoke Ngram language model component. LanguageModelNgramInfo *ngram_info = NULL; if (language_model_ngram_on) { ngram_info = GenerateNgramInfo( dict_->getUnicharset().id_to_unichar(b->unichar_id()), b->certainty(), denom, curr_col, curr_row, outline_length, parent_vse); ASSERT_HOST(ngram_info != NULL); } bool liked_by_language_model = dawg_info != NULL || (ngram_info != NULL && !ngram_info->pruned); // Quick escape if not liked by the language model, can't be consistent // xheight, and not top choice. if (!liked_by_language_model && top_choice_flags == 0) { if (language_model_debug_level > 1) { tprintf("Language model components very early pruned this entry\n"); } delete ngram_info; delete dawg_info; return false; } // Check consistency of the path and set the relevant consistency_info. LMConsistencyInfo consistency_info( parent_vse != NULL ? &parent_vse->consistency_info : NULL); // Start with just the x-height consistency, as it provides significant // pruning opportunity. consistency_info.ComputeXheightConsistency( b, dict_->getUnicharset().get_ispunctuation(b->unichar_id())); // Turn off xheight consistent flag if not consistent. if (consistency_info.InconsistentXHeight()) { top_choice_flags &= ~kXhtConsistentFlag; } // Quick escape if not liked by the language model, not consistent xheight, // and not top choice. if (!liked_by_language_model && top_choice_flags == 0) { if (language_model_debug_level > 1) { tprintf("Language model components early pruned this entry\n"); } delete ngram_info; delete dawg_info; return false; } // Compute the rest of the consistency info. FillConsistencyInfo(curr_col, word_end, b, parent_vse, word_res, &consistency_info); if (dawg_info != NULL && consistency_info.invalid_punc) { consistency_info.invalid_punc = false; // do not penalize dict words } // Compute cost of associating the blobs that represent the current unichar. AssociateStats associate_stats; ComputeAssociateStats(curr_col, curr_row, max_char_wh_ratio_, parent_vse, word_res, &associate_stats); if (parent_vse != NULL) { associate_stats.shape_cost += parent_vse->associate_stats.shape_cost; associate_stats.bad_shape |= parent_vse->associate_stats.bad_shape; } // Create the new ViterbiStateEntry compute the adjusted cost of the path. ViterbiStateEntry *new_vse = new ViterbiStateEntry( parent_vse, b, 0.0, outline_length, consistency_info, associate_stats, top_choice_flags, dawg_info, ngram_info, (language_model_debug_level > 0) ? dict_->getUnicharset().id_to_unichar(b->unichar_id()) : NULL); new_vse->cost = ComputeAdjustedPathCost(new_vse); if (language_model_debug_level >= 3) tprintf("Adjusted cost = %g\n", new_vse->cost); // Invoke Top Choice language model component to make the final adjustments // to new_vse->top_choice_flags. if (!curr_state->viterbi_state_entries.empty() && new_vse->top_choice_flags) { GenerateTopChoiceInfo(new_vse, parent_vse, curr_state); } // If language model components did not like this unichar - return. bool keep = new_vse->top_choice_flags || liked_by_language_model; if (!(top_choice_flags & kSmallestRatingFlag) && // no non-top choice paths consistency_info.inconsistent_script) { // with inconsistent script keep = false; } if (!keep) { if (language_model_debug_level > 1) { tprintf("Language model components did not like this entry\n"); } delete new_vse; return false; } // Discard this entry if it represents a prunable path and // language_model_viterbi_list_max_num_prunable such entries with a lower // cost have already been recorded. if (PrunablePath(*new_vse) && (curr_state->viterbi_state_entries_prunable_length >= language_model_viterbi_list_max_num_prunable) && new_vse->cost >= curr_state->viterbi_state_entries_prunable_max_cost) { if (language_model_debug_level > 1) { tprintf("Discarded ViterbiEntry with high cost %g max cost %g\n", new_vse->cost, curr_state->viterbi_state_entries_prunable_max_cost); } delete new_vse; return false; } // Update best choice if needed. if (word_end) { UpdateBestChoice(new_vse, pain_points, word_res, best_choice_bundle, blamer_bundle); // Discard the entry if UpdateBestChoice() found flaws in it. if (new_vse->cost >= WERD_CHOICE::kBadRating && new_vse != best_choice_bundle->best_vse) { if (language_model_debug_level > 1) { tprintf("Discarded ViterbiEntry with high cost %g\n", new_vse->cost); } delete new_vse; return false; } } // Add the new ViterbiStateEntry and to curr_state->viterbi_state_entries. curr_state->viterbi_state_entries.add_sorted(ViterbiStateEntry::Compare, false, new_vse); curr_state->viterbi_state_entries_length++; if (PrunablePath(*new_vse)) { curr_state->viterbi_state_entries_prunable_length++; } // Update lms->viterbi_state_entries_prunable_max_cost and clear // top_choice_flags of entries with ratings_sum than new_vse->ratings_sum. if ((curr_state->viterbi_state_entries_prunable_length >= language_model_viterbi_list_max_num_prunable) || new_vse->top_choice_flags) { ASSERT_HOST(!curr_state->viterbi_state_entries.empty()); int prunable_counter = language_model_viterbi_list_max_num_prunable; vit.set_to_list(&(curr_state->viterbi_state_entries)); for (vit.mark_cycle_pt(); !vit.cycled_list(); vit.forward()) { ViterbiStateEntry *curr_vse = vit.data(); // Clear the appropriate top choice flags of the entries in the // list that have cost higher thank new_entry->cost // (since they will not be top choices any more). if (curr_vse->top_choice_flags && curr_vse != new_vse && curr_vse->cost > new_vse->cost) { curr_vse->top_choice_flags &= ~(new_vse->top_choice_flags); } if (prunable_counter > 0 && PrunablePath(*curr_vse)) --prunable_counter; // Update curr_state->viterbi_state_entries_prunable_max_cost. if (prunable_counter == 0) { curr_state->viterbi_state_entries_prunable_max_cost = vit.data()->cost; if (language_model_debug_level > 1) { tprintf("Set viterbi_state_entries_prunable_max_cost to %g\n", curr_state->viterbi_state_entries_prunable_max_cost); } prunable_counter = -1; // stop counting } } } // Print the newly created ViterbiStateEntry. if (language_model_debug_level > 2) { new_vse->Print("New"); if (language_model_debug_level > 5) curr_state->Print("Updated viterbi list"); } return true; } void LanguageModel::GenerateTopChoiceInfo(ViterbiStateEntry *new_vse, const ViterbiStateEntry *parent_vse, LanguageModelState *lms) { ViterbiStateEntry_IT vit(&(lms->viterbi_state_entries)); for (vit.mark_cycle_pt(); !vit.cycled_list() && new_vse->top_choice_flags && new_vse->cost >= vit.data()->cost; vit.forward()) { // Clear the appropriate flags if the list already contains // a top choice entry with a lower cost. new_vse->top_choice_flags &= ~(vit.data()->top_choice_flags); } if (language_model_debug_level > 2) { tprintf("GenerateTopChoiceInfo: top_choice_flags=0x%x\n", new_vse->top_choice_flags); } } LanguageModelDawgInfo *LanguageModel::GenerateDawgInfo( bool word_end, int curr_col, int curr_row, const BLOB_CHOICE &b, const ViterbiStateEntry *parent_vse) { // Initialize active_dawgs from parent_vse if it is not NULL. // Otherwise use very_beginning_active_dawgs_. if (parent_vse == NULL) { dawg_args_->active_dawgs = very_beginning_active_dawgs_; dawg_args_->permuter = NO_PERM; } else { if (parent_vse->dawg_info == NULL) return NULL; // not a dict word path dawg_args_->active_dawgs = parent_vse->dawg_info->active_dawgs; dawg_args_->permuter = parent_vse->dawg_info->permuter; } // Deal with hyphenated words. if (word_end && dict_->has_hyphen_end(b.unichar_id(), curr_col == 0)) { if (language_model_debug_level > 0) tprintf("Hyphenated word found\n"); return new LanguageModelDawgInfo(dawg_args_->active_dawgs, COMPOUND_PERM); } // Deal with compound words. if (dict_->compound_marker(b.unichar_id()) && (parent_vse == NULL || parent_vse->dawg_info->permuter != NUMBER_PERM)) { if (language_model_debug_level > 0) tprintf("Found compound marker\n"); // Do not allow compound operators at the beginning and end of the word. // Do not allow more than one compound operator per word. // Do not allow compounding of words with lengths shorter than // language_model_min_compound_length if (parent_vse == NULL || word_end || dawg_args_->permuter == COMPOUND_PERM || parent_vse->length < language_model_min_compound_length) return NULL; int i; // Check a that the path terminated before the current character is a word. bool has_word_ending = false; for (i = 0; i < parent_vse->dawg_info->active_dawgs->size(); ++i) { const DawgPosition &pos = (*parent_vse->dawg_info->active_dawgs)[i]; const Dawg *pdawg = pos.dawg_index < 0 ? NULL : dict_->GetDawg(pos.dawg_index); if (pdawg == NULL || pos.back_to_punc) continue;; if (pdawg->type() == DAWG_TYPE_WORD && pos.dawg_ref != NO_EDGE && pdawg->end_of_word(pos.dawg_ref)) { has_word_ending = true; break; } } if (!has_word_ending) return NULL; if (language_model_debug_level > 0) tprintf("Compound word found\n"); return new LanguageModelDawgInfo(beginning_active_dawgs_, COMPOUND_PERM); } // done dealing with compound words LanguageModelDawgInfo *dawg_info = NULL; // Call LetterIsOkay(). // Use the normalized IDs so that all shapes of ' can be allowed in words // like don't. const GenericVector& normed_ids = dict_->getUnicharset().normed_ids(b.unichar_id()); DawgPositionVector tmp_active_dawgs; for (int i = 0; i < normed_ids.size(); ++i) { if (language_model_debug_level > 2) tprintf("Test Letter OK for unichar %d, normed %d\n", b.unichar_id(), normed_ids[i]); dict_->LetterIsOkay(dawg_args_, normed_ids[i], word_end && i == normed_ids.size() - 1); if (dawg_args_->permuter == NO_PERM) { break; } else if (i < normed_ids.size() - 1) { tmp_active_dawgs = *dawg_args_->updated_dawgs; dawg_args_->active_dawgs = &tmp_active_dawgs; } if (language_model_debug_level > 2) tprintf("Letter was OK for unichar %d, normed %d\n", b.unichar_id(), normed_ids[i]); } dawg_args_->active_dawgs = NULL; if (dawg_args_->permuter != NO_PERM) { dawg_info = new LanguageModelDawgInfo(dawg_args_->updated_dawgs, dawg_args_->permuter); } else if (language_model_debug_level > 3) { tprintf("Letter %s not OK!\n", dict_->getUnicharset().id_to_unichar(b.unichar_id())); } return dawg_info; } LanguageModelNgramInfo *LanguageModel::GenerateNgramInfo( const char *unichar, float certainty, float denom, int curr_col, int curr_row, float outline_length, const ViterbiStateEntry *parent_vse) { // Initialize parent context. const char *pcontext_ptr = ""; int pcontext_unichar_step_len = 0; if (parent_vse == NULL) { pcontext_ptr = prev_word_str_.string(); pcontext_unichar_step_len = prev_word_unichar_step_len_; } else { pcontext_ptr = parent_vse->ngram_info->context.string(); pcontext_unichar_step_len = parent_vse->ngram_info->context_unichar_step_len; } // Compute p(unichar | parent context). int unichar_step_len = 0; bool pruned = false; float ngram_cost; float ngram_and_classifier_cost = ComputeNgramCost(unichar, certainty, denom, pcontext_ptr, &unichar_step_len, &pruned, &ngram_cost); // Normalize just the ngram_and_classifier_cost by outline_length. // The ngram_cost is used by the params_model, so it needs to be left as-is, // and the params model cost will be normalized by outline_length. ngram_and_classifier_cost *= outline_length / language_model_ngram_rating_factor; // Add the ngram_cost of the parent. if (parent_vse != NULL) { ngram_and_classifier_cost += parent_vse->ngram_info->ngram_and_classifier_cost; ngram_cost += parent_vse->ngram_info->ngram_cost; } // Shorten parent context string by unichar_step_len unichars. int num_remove = (unichar_step_len + pcontext_unichar_step_len - language_model_ngram_order); if (num_remove > 0) pcontext_unichar_step_len -= num_remove; while (num_remove > 0 && *pcontext_ptr != '\0') { pcontext_ptr += UNICHAR::utf8_step(pcontext_ptr); --num_remove; } // Decide whether to prune this ngram path and update changed accordingly. if (parent_vse != NULL && parent_vse->ngram_info->pruned) pruned = true; // Construct and return the new LanguageModelNgramInfo. LanguageModelNgramInfo *ngram_info = new LanguageModelNgramInfo( pcontext_ptr, pcontext_unichar_step_len, pruned, ngram_cost, ngram_and_classifier_cost); ngram_info->context += unichar; ngram_info->context_unichar_step_len += unichar_step_len; assert(ngram_info->context_unichar_step_len <= language_model_ngram_order); return ngram_info; } float LanguageModel::ComputeNgramCost(const char *unichar, float certainty, float denom, const char *context, int *unichar_step_len, bool *found_small_prob, float *ngram_cost) { const char *context_ptr = context; char *modified_context = NULL; char *modified_context_end = NULL; const char *unichar_ptr = unichar; const char *unichar_end = unichar_ptr + strlen(unichar_ptr); float prob = 0.0f; int step = 0; while (unichar_ptr < unichar_end && (step = UNICHAR::utf8_step(unichar_ptr)) > 0) { if (language_model_debug_level > 1) { tprintf("prob(%s | %s)=%g\n", unichar_ptr, context_ptr, dict_->ProbabilityInContext(context_ptr, -1, unichar_ptr, step)); } prob += dict_->ProbabilityInContext(context_ptr, -1, unichar_ptr, step); ++(*unichar_step_len); if (language_model_ngram_use_only_first_uft8_step) break; unichar_ptr += step; // If there are multiple UTF8 characters present in unichar, context is // updated to include the previously examined characters from str, // unless use_only_first_uft8_step is true. if (unichar_ptr < unichar_end) { if (modified_context == NULL) { int context_len = strlen(context); modified_context = new char[context_len + strlen(unichar_ptr) + step + 1]; strncpy(modified_context, context, context_len); modified_context_end = modified_context + context_len; context_ptr = modified_context; } strncpy(modified_context_end, unichar_ptr - step, step); modified_context_end += step; *modified_context_end = '\0'; } } prob /= static_cast(*unichar_step_len); // normalize if (prob < language_model_ngram_small_prob) { if (language_model_debug_level > 0) tprintf("Found small prob %g\n", prob); *found_small_prob = true; prob = language_model_ngram_small_prob; } *ngram_cost = -1.0*log2(prob); float ngram_and_classifier_cost = -1.0*log2(CertaintyScore(certainty)/denom) + *ngram_cost * language_model_ngram_scale_factor; if (language_model_debug_level > 1) { tprintf("-log [ p(%s) * p(%s | %s) ] = -log2(%g*%g) = %g\n", unichar, unichar, context_ptr, CertaintyScore(certainty)/denom, prob, ngram_and_classifier_cost); } if (modified_context != NULL) delete[] modified_context; return ngram_and_classifier_cost; } float LanguageModel::ComputeDenom(BLOB_CHOICE_LIST *curr_list) { if (curr_list->empty()) return 1.0f; float denom = 0.0f; int len = 0; BLOB_CHOICE_IT c_it(curr_list); for (c_it.mark_cycle_pt(); !c_it.cycled_list(); c_it.forward()) { ASSERT_HOST(c_it.data() != NULL); ++len; denom += CertaintyScore(c_it.data()->certainty()); } assert(len != 0); // The ideal situation would be to have the classifier scores for // classifying each position as each of the characters in the unicharset. // Since we can not do this because of speed, we add a very crude estimate // of what these scores for the "missing" classifications would sum up to. denom += (dict_->getUnicharset().size() - len) * CertaintyScore(language_model_ngram_nonmatch_score); return denom; } void LanguageModel::FillConsistencyInfo( int curr_col, bool word_end, BLOB_CHOICE *b, ViterbiStateEntry *parent_vse, WERD_RES *word_res, LMConsistencyInfo *consistency_info) { const UNICHARSET &unicharset = dict_->getUnicharset(); UNICHAR_ID unichar_id = b->unichar_id(); BLOB_CHOICE* parent_b = parent_vse != NULL ? parent_vse->curr_b : NULL; // Check punctuation validity. if (unicharset.get_ispunctuation(unichar_id)) consistency_info->num_punc++; if (dict_->GetPuncDawg() != NULL && !consistency_info->invalid_punc) { if (dict_->compound_marker(unichar_id) && parent_b != NULL && (unicharset.get_isalpha(parent_b->unichar_id()) || unicharset.get_isdigit(parent_b->unichar_id()))) { // reset punc_ref for compound words consistency_info->punc_ref = NO_EDGE; } else { bool is_apos = dict_->is_apostrophe(unichar_id); bool prev_is_numalpha = (parent_b != NULL && (unicharset.get_isalpha(parent_b->unichar_id()) || unicharset.get_isdigit(parent_b->unichar_id()))); UNICHAR_ID pattern_unichar_id = (unicharset.get_isalpha(unichar_id) || unicharset.get_isdigit(unichar_id) || (is_apos && prev_is_numalpha)) ? Dawg::kPatternUnicharID : unichar_id; if (consistency_info->punc_ref == NO_EDGE || pattern_unichar_id != Dawg::kPatternUnicharID || dict_->GetPuncDawg()->edge_letter(consistency_info->punc_ref) != Dawg::kPatternUnicharID) { NODE_REF node = Dict::GetStartingNode(dict_->GetPuncDawg(), consistency_info->punc_ref); consistency_info->punc_ref = (node != NO_EDGE) ? dict_->GetPuncDawg()->edge_char_of( node, pattern_unichar_id, word_end) : NO_EDGE; if (consistency_info->punc_ref == NO_EDGE) { consistency_info->invalid_punc = true; } } } } // Update case related counters. if (parent_vse != NULL && !word_end && dict_->compound_marker(unichar_id)) { // Reset counters if we are dealing with a compound word. consistency_info->num_lower = 0; consistency_info->num_non_first_upper = 0; } else if (unicharset.get_islower(unichar_id)) { consistency_info->num_lower++; } else if ((parent_b != NULL) && unicharset.get_isupper(unichar_id)) { if (unicharset.get_isupper(parent_b->unichar_id()) || consistency_info->num_lower > 0 || consistency_info->num_non_first_upper > 0) { consistency_info->num_non_first_upper++; } } // Initialize consistency_info->script_id (use script of unichar_id // if it is not Common, use script id recorded by the parent otherwise). // Set inconsistent_script to true if the script of the current unichar // is not consistent with that of the parent. consistency_info->script_id = unicharset.get_script(unichar_id); // Hiragana and Katakana can mix with Han. if (dict_->getUnicharset().han_sid() != dict_->getUnicharset().null_sid()) { if ((unicharset.hiragana_sid() != unicharset.null_sid() && consistency_info->script_id == unicharset.hiragana_sid()) || (unicharset.katakana_sid() != unicharset.null_sid() && consistency_info->script_id == unicharset.katakana_sid())) { consistency_info->script_id = dict_->getUnicharset().han_sid(); } } if (parent_vse != NULL && (parent_vse->consistency_info.script_id != dict_->getUnicharset().common_sid())) { int parent_script_id = parent_vse->consistency_info.script_id; // If script_id is Common, use script id of the parent instead. if (consistency_info->script_id == dict_->getUnicharset().common_sid()) { consistency_info->script_id = parent_script_id; } if (consistency_info->script_id != parent_script_id) { consistency_info->inconsistent_script = true; } } // Update chartype related counters. if (unicharset.get_isalpha(unichar_id)) { consistency_info->num_alphas++; } else if (unicharset.get_isdigit(unichar_id)) { consistency_info->num_digits++; } else if (!unicharset.get_ispunctuation(unichar_id)) { consistency_info->num_other++; } // Check font and spacing consistency. if (fontinfo_table_->size() > 0 && parent_b != NULL) { int fontinfo_id = -1; if (parent_b->fontinfo_id() == b->fontinfo_id() || parent_b->fontinfo_id2() == b->fontinfo_id()) { fontinfo_id = b->fontinfo_id(); } else if (parent_b->fontinfo_id() == b->fontinfo_id2() || parent_b->fontinfo_id2() == b->fontinfo_id2()) { fontinfo_id = b->fontinfo_id2(); } if(language_model_debug_level > 1) { tprintf("pfont %s pfont %s font %s font2 %s common %s(%d)\n", (parent_b->fontinfo_id() >= 0) ? fontinfo_table_->get(parent_b->fontinfo_id()).name : "" , (parent_b->fontinfo_id2() >= 0) ? fontinfo_table_->get(parent_b->fontinfo_id2()).name : "", (b->fontinfo_id() >= 0) ? fontinfo_table_->get(b->fontinfo_id()).name : "", (fontinfo_id >= 0) ? fontinfo_table_->get(fontinfo_id).name : "", (fontinfo_id >= 0) ? fontinfo_table_->get(fontinfo_id).name : "", fontinfo_id); } if (!word_res->blob_widths.empty()) { // if we have widths/gaps info bool expected_gap_found = false; float expected_gap; int temp_gap; if (fontinfo_id >= 0) { // found a common font ASSERT_HOST(fontinfo_id < fontinfo_table_->size()); if (fontinfo_table_->get(fontinfo_id).get_spacing( parent_b->unichar_id(), unichar_id, &temp_gap)) { expected_gap = temp_gap; expected_gap_found = true; } } else { consistency_info->inconsistent_font = true; // Get an average of the expected gaps in each font int num_addends = 0; expected_gap = 0; int temp_fid; for (int i = 0; i < 4; ++i) { if (i == 0) { temp_fid = parent_b->fontinfo_id(); } else if (i == 1) { temp_fid = parent_b->fontinfo_id2(); } else if (i == 2) { temp_fid = b->fontinfo_id(); } else { temp_fid = b->fontinfo_id2(); } ASSERT_HOST(temp_fid < 0 || fontinfo_table_->size()); if (temp_fid >= 0 && fontinfo_table_->get(temp_fid).get_spacing( parent_b->unichar_id(), unichar_id, &temp_gap)) { expected_gap += temp_gap; num_addends++; } } expected_gap_found = (num_addends > 0); if (num_addends > 0) { expected_gap /= static_cast(num_addends); } } if (expected_gap_found) { float actual_gap = static_cast(word_res->GetBlobsGap(curr_col-1)); float gap_ratio = expected_gap / actual_gap; // TODO(rays) The gaps seem to be way off most of the time, saved by // the error here that the ratio was compared to 1/2, when it should // have been 0.5f. Find the source of the gaps discrepancy and put // the 0.5f here in place of 0.0f. // Test on 2476595.sj, pages 0 to 6. (In French.) if (gap_ratio < 0.0f || gap_ratio > 2.0f) { consistency_info->num_inconsistent_spaces++; } if (language_model_debug_level > 1) { tprintf("spacing for %s(%d) %s(%d) col %d: expected %g actual %g\n", unicharset.id_to_unichar(parent_b->unichar_id()), parent_b->unichar_id(), unicharset.id_to_unichar(unichar_id), unichar_id, curr_col, expected_gap, actual_gap); } } } } } float LanguageModel::ComputeAdjustedPathCost(ViterbiStateEntry *vse) { ASSERT_HOST(vse != NULL); if (params_model_.Initialized()) { float features[PTRAIN_NUM_FEATURE_TYPES]; ExtractFeaturesFromPath(*vse, features); float cost = params_model_.ComputeCost(features); if (language_model_debug_level > 3) { tprintf("ComputeAdjustedPathCost %g ParamsModel features:\n", cost); if (language_model_debug_level >= 5) { for (int f = 0; f < PTRAIN_NUM_FEATURE_TYPES; ++f) { tprintf("%s=%g\n", kParamsTrainingFeatureTypeName[f], features[f]); } } } return cost * vse->outline_length; } else { float adjustment = 1.0f; if (vse->dawg_info == NULL || vse->dawg_info->permuter != FREQ_DAWG_PERM) { adjustment += language_model_penalty_non_freq_dict_word; } if (vse->dawg_info == NULL) { adjustment += language_model_penalty_non_dict_word; if (vse->length > language_model_min_compound_length) { adjustment += ((vse->length - language_model_min_compound_length) * language_model_penalty_increment); } } if (vse->associate_stats.shape_cost > 0) { adjustment += vse->associate_stats.shape_cost / static_cast(vse->length); } if (language_model_ngram_on) { ASSERT_HOST(vse->ngram_info != NULL); return vse->ngram_info->ngram_and_classifier_cost * adjustment; } else { adjustment += ComputeConsistencyAdjustment(vse->dawg_info, vse->consistency_info); return vse->ratings_sum * adjustment; } } } void LanguageModel::UpdateBestChoice( ViterbiStateEntry *vse, LMPainPoints *pain_points, WERD_RES *word_res, BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle) { bool truth_path; WERD_CHOICE *word = ConstructWord(vse, word_res, &best_choice_bundle->fixpt, blamer_bundle, &truth_path); ASSERT_HOST(word != NULL); if (dict_->stopper_debug_level >= 1) { STRING word_str; word->string_and_lengths(&word_str, NULL); vse->Print(word_str.string()); } if (language_model_debug_level > 0) { word->print("UpdateBestChoice() constructed word"); } // Record features from the current path if necessary. ParamsTrainingHypothesis curr_hyp; if (blamer_bundle != NULL) { if (vse->dawg_info != NULL) vse->dawg_info->permuter = static_cast(word->permuter()); ExtractFeaturesFromPath(*vse, curr_hyp.features); word->string_and_lengths(&(curr_hyp.str), NULL); curr_hyp.cost = vse->cost; // record cost for error rate computations if (language_model_debug_level > 0) { tprintf("Raw features extracted from %s (cost=%g) [ ", curr_hyp.str.string(), curr_hyp.cost); for (int deb_i = 0; deb_i < PTRAIN_NUM_FEATURE_TYPES; ++deb_i) { tprintf("%g ", curr_hyp.features[deb_i]); } tprintf("]\n"); } // Record the current hypothesis in params_training_bundle. blamer_bundle->AddHypothesis(curr_hyp); if (truth_path) blamer_bundle->UpdateBestRating(word->rating()); } if (blamer_bundle != NULL && blamer_bundle->GuidedSegsearchStillGoing()) { // The word was constructed solely for blamer_bundle->AddHypothesis, so // we no longer need it. delete word; return; } if (word_res->chopped_word != NULL && !word_res->chopped_word->blobs.empty()) word->SetScriptPositions(false, word_res->chopped_word); // Update and log new raw_choice if needed. if (word_res->raw_choice == NULL || word->rating() < word_res->raw_choice->rating()) { if (word_res->LogNewRawChoice(word) && language_model_debug_level > 0) tprintf("Updated raw choice\n"); } // Set the modified rating for best choice to vse->cost and log best choice. word->set_rating(vse->cost); // Call LogNewChoice() for best choice from Dict::adjust_word() since it // computes adjust_factor that is used by the adaption code (e.g. by // ClassifyAdaptableWord() to compute adaption acceptance thresholds). // Note: the rating of the word is not adjusted. dict_->adjust_word(word, vse->dawg_info == NULL, vse->consistency_info.xht_decision, 0.0, false, language_model_debug_level > 0); // Hand ownership of the word over to the word_res. if (!word_res->LogNewCookedChoice(dict_->tessedit_truncate_wordchoice_log, dict_->stopper_debug_level >= 1, word)) { // The word was so bad that it was deleted. return; } if (word_res->best_choice == word) { // Word was the new best. if (dict_->AcceptableChoice(*word, vse->consistency_info.xht_decision) && AcceptablePath(*vse)) { acceptable_choice_found_ = true; } // Update best_choice_bundle. best_choice_bundle->updated = true; best_choice_bundle->best_vse = vse; if (language_model_debug_level > 0) { tprintf("Updated best choice\n"); word->print_state("New state "); } // Update hyphen state if we are dealing with a dictionary word. if (vse->dawg_info != NULL) { if (dict_->has_hyphen_end(*word)) { dict_->set_hyphen_word(*word, *(dawg_args_->active_dawgs)); } else { dict_->reset_hyphen_vars(true); } } if (blamer_bundle != NULL) { blamer_bundle->set_best_choice_is_dict_and_top_choice( vse->dawg_info != NULL && vse->top_choice_flags); } } if (wordrec_display_segmentations && word_res->chopped_word != NULL) { word->DisplaySegmentation(word_res->chopped_word); } } void LanguageModel::ExtractFeaturesFromPath( const ViterbiStateEntry &vse, float features[]) { memset(features, 0, sizeof(float) * PTRAIN_NUM_FEATURE_TYPES); // Record dictionary match info. int len = vse.length <= kMaxSmallWordUnichars ? 0 : vse.length <= kMaxMediumWordUnichars ? 1 : 2; if (vse.dawg_info != NULL) { int permuter = vse.dawg_info->permuter; if (permuter == NUMBER_PERM || permuter == USER_PATTERN_PERM) { if (vse.consistency_info.num_digits == vse.length) { features[PTRAIN_DIGITS_SHORT+len] = 1.0; } else { features[PTRAIN_NUM_SHORT+len] = 1.0; } } else if (permuter == DOC_DAWG_PERM) { features[PTRAIN_DOC_SHORT+len] = 1.0; } else if (permuter == SYSTEM_DAWG_PERM || permuter == USER_DAWG_PERM || permuter == COMPOUND_PERM) { features[PTRAIN_DICT_SHORT+len] = 1.0; } else if (permuter == FREQ_DAWG_PERM) { features[PTRAIN_FREQ_SHORT+len] = 1.0; } } // Record shape cost feature (normalized by path length). features[PTRAIN_SHAPE_COST_PER_CHAR] = vse.associate_stats.shape_cost / static_cast(vse.length); // Record ngram cost. (normalized by the path length). features[PTRAIN_NGRAM_COST_PER_CHAR] = 0.0; if (vse.ngram_info != NULL) { features[PTRAIN_NGRAM_COST_PER_CHAR] = vse.ngram_info->ngram_cost / static_cast(vse.length); } // Record consistency-related features. // Disabled this feature for due to its poor performance. // features[PTRAIN_NUM_BAD_PUNC] = vse.consistency_info.NumInconsistentPunc(); features[PTRAIN_NUM_BAD_CASE] = vse.consistency_info.NumInconsistentCase(); features[PTRAIN_XHEIGHT_CONSISTENCY] = vse.consistency_info.xht_decision; features[PTRAIN_NUM_BAD_CHAR_TYPE] = vse.dawg_info == NULL ? vse.consistency_info.NumInconsistentChartype() : 0.0; features[PTRAIN_NUM_BAD_SPACING] = vse.consistency_info.NumInconsistentSpaces(); // Disabled this feature for now due to its poor performance. // features[PTRAIN_NUM_BAD_FONT] = vse.consistency_info.inconsistent_font; // Classifier-related features. features[PTRAIN_RATING_PER_CHAR] = vse.ratings_sum / static_cast(vse.outline_length); } WERD_CHOICE *LanguageModel::ConstructWord( ViterbiStateEntry *vse, WERD_RES *word_res, DANGERR *fixpt, BlamerBundle *blamer_bundle, bool *truth_path) { if (truth_path != NULL) { *truth_path = (blamer_bundle != NULL && vse->length == blamer_bundle->correct_segmentation_length()); } BLOB_CHOICE *curr_b = vse->curr_b; ViterbiStateEntry *curr_vse = vse; int i; bool compound = dict_->hyphenated(); // treat hyphenated words as compound // Re-compute the variance of the width-to-height ratios (since we now // can compute the mean over the whole word). float full_wh_ratio_mean = 0.0f; if (vse->associate_stats.full_wh_ratio_var != 0.0f) { vse->associate_stats.shape_cost -= vse->associate_stats.full_wh_ratio_var; full_wh_ratio_mean = (vse->associate_stats.full_wh_ratio_total / static_cast(vse->length)); vse->associate_stats.full_wh_ratio_var = 0.0f; } // Construct a WERD_CHOICE by tracing parent pointers. WERD_CHOICE *word = new WERD_CHOICE(word_res->uch_set, vse->length); word->set_length(vse->length); int total_blobs = 0; for (i = (vse->length-1); i >= 0; --i) { if (blamer_bundle != NULL && truth_path != NULL && *truth_path && !blamer_bundle->MatrixPositionCorrect(i, curr_b->matrix_cell())) { *truth_path = false; } // The number of blobs used for this choice is row - col + 1. int num_blobs = curr_b->matrix_cell().row - curr_b->matrix_cell().col + 1; total_blobs += num_blobs; word->set_blob_choice(i, num_blobs, curr_b); // Update the width-to-height ratio variance. Useful non-space delimited // languages to ensure that the blobs are of uniform width. // Skip leading and trailing punctuation when computing the variance. if ((full_wh_ratio_mean != 0.0f && ((curr_vse != vse && curr_vse->parent_vse != NULL) || !dict_->getUnicharset().get_ispunctuation(curr_b->unichar_id())))) { vse->associate_stats.full_wh_ratio_var += pow(full_wh_ratio_mean - curr_vse->associate_stats.full_wh_ratio, 2); if (language_model_debug_level > 2) { tprintf("full_wh_ratio_var += (%g-%g)^2\n", full_wh_ratio_mean, curr_vse->associate_stats.full_wh_ratio); } } // Mark the word as compound if compound permuter was set for any of // the unichars on the path (usually this will happen for unichars // that are compounding operators, like "-" and "/"). if (!compound && curr_vse->dawg_info && curr_vse->dawg_info->permuter == COMPOUND_PERM) compound = true; // Update curr_* pointers. curr_vse = curr_vse->parent_vse; if (curr_vse == NULL) break; curr_b = curr_vse->curr_b; } ASSERT_HOST(i == 0); // check that we recorded all the unichar ids. ASSERT_HOST(total_blobs == word_res->ratings->dimension()); // Re-adjust shape cost to include the updated width-to-height variance. if (full_wh_ratio_mean != 0.0f) { vse->associate_stats.shape_cost += vse->associate_stats.full_wh_ratio_var; } word->set_rating(vse->ratings_sum); word->set_certainty(vse->min_certainty); word->set_x_heights(vse->consistency_info.BodyMinXHeight(), vse->consistency_info.BodyMaxXHeight()); if (vse->dawg_info != NULL) { word->set_permuter(compound ? COMPOUND_PERM : vse->dawg_info->permuter); } else if (language_model_ngram_on && !vse->ngram_info->pruned) { word->set_permuter(NGRAM_PERM); } else if (vse->top_choice_flags) { word->set_permuter(TOP_CHOICE_PERM); } else { word->set_permuter(NO_PERM); } word->set_dangerous_ambig_found_(!dict_->NoDangerousAmbig(word, fixpt, true, word_res->ratings)); return word; } } // namespace tesseract