#include "validator.h" #include #include #include #include #include "icuerrorcode.h" #include "unicode/uchar.h" // From libicu #include "unicode/uscript.h" // From libicu #include "validate_grapheme.h" #include "validate_indic.h" #include "validate_javanese.h" #include "validate_khmer.h" #include "validate_myanmar.h" namespace tesseract { // Some specific but universally useful unicodes. const char32 Validator::kZeroWidthSpace = 0x200B; const char32 Validator::kZeroWidthNonJoiner = 0x200C; const char32 Validator::kZeroWidthJoiner = 0x200D; const char32 Validator::kLeftToRightMark = 0x200E; const char32 Validator::kRightToLeftMark = 0x200F; const char32 Validator::kInvalid = 0xfffd; // Validates and cleans the src vector of unicodes to the *dest, according to // g_mode. In the case of kSingleString, a single vector containing the whole // result is added to *dest. With kCombined, multiple vectors are added to // *dest with one grapheme in each. With kGlyphSplit, multiple vectors are // added to *dest with a smaller unit representing a glyph in each. // In case of validation error, returns false and as much as possible of the // input, without discarding invalid text. /* static */ bool Validator::ValidateCleanAndSegment( GraphemeNormMode g_mode, bool report_errors, const std::vector& src, std::vector>* dest) { ValidateGrapheme g_validator(ViramaScript::kNonVirama, report_errors); std::vector> graphemes; ViramaScript script = MostFrequentViramaScript(src); bool success = true; if (script == ViramaScript::kNonVirama) { // The grapheme segmenter's maximum segmentation is the grapheme unit, so // up the mode by 1 to get the desired effect. if (g_mode == GraphemeNormMode::kCombined) g_mode = GraphemeNormMode::kGlyphSplit; else if (g_mode == GraphemeNormMode::kGlyphSplit) g_mode = GraphemeNormMode::kIndividualUnicodes; // Just do grapheme segmentation. success = g_validator.ValidateCleanAndSegmentInternal(g_mode, src, dest); } else { success = g_validator.ValidateCleanAndSegmentInternal( GraphemeNormMode::kGlyphSplit, src, &graphemes); std::unique_ptr validator( ScriptValidator(script, report_errors)); for (const auto& grapheme : graphemes) { if (!validator->ValidateCleanAndSegmentInternal(g_mode, grapheme, dest)) { success = false; } } } return success; } // Factory method that understands how to map script to the right subclass. std::unique_ptr Validator::ScriptValidator(ViramaScript script, bool report_errors) { switch (script) { case ViramaScript::kNonVirama: return std::unique_ptr( new ValidateGrapheme(script, report_errors)); case ViramaScript::kJavanese: return std::unique_ptr( new ValidateJavanese(script, report_errors)); case ViramaScript::kMyanmar: return std::unique_ptr( new ValidateMyanmar(script, report_errors)); case ViramaScript::kKhmer: return std::unique_ptr( new ValidateKhmer(script, report_errors)); default: return std::unique_ptr( new ValidateIndic(script, report_errors)); } } // Internal version of the public static ValidateCleanAndSegment. // Validates and cleans the src vector of unicodes to the *dest, according to // its type and the given g_mode. // In case of validation error, returns false and returns as much as possible // of the input, without discarding invalid text. bool Validator::ValidateCleanAndSegmentInternal( GraphemeNormMode g_mode, const std::vector& src, std::vector>* dest) { Clear(); ComputeClassCodes(src); bool success = true; for (codes_used_ = 0; codes_used_ < codes_.size();) { if (!ConsumeGraphemeIfValid()) { success = false; ++codes_used_; } } MoveResultsToDest(g_mode, dest); return success; } // Moves the results from parts_ or output_ to dest according to g_mode. void Validator::MoveResultsToDest(GraphemeNormMode g_mode, std::vector>* dest) { if (g_mode == GraphemeNormMode::kIndividualUnicodes) { // Append each element of the combined output_ that we made as a new vector // in dest. dest->reserve(dest->size() + output_.size()); for (char32 ch : output_) dest->push_back({ch}); } else if (g_mode == GraphemeNormMode::kGlyphSplit) { // Append all the parts_ that we made onto dest. std::move(parts_.begin(), parts_.end(), std::back_inserter(*dest)); } else if (g_mode == GraphemeNormMode::kCombined || dest->empty()) { // Append the combined output_ that we made onto dest as one new vector. dest->push_back(std::vector()); output_.swap(dest->back()); } else { // kNone. // Append the combined output_ that we made onto the last existing element // of dest. dest->back().insert(dest->back().end(), output_.begin(), output_.end()); } } static bool CmpPairSecond(const std::pair& p1, const std::pair& p2) { return p1.second < p2.second; } // Computes and returns the ViramaScript corresponding to the most frequent // virama-using script in the input, or kNonVirama if none are present. /* static */ ViramaScript Validator::MostFrequentViramaScript( const std::vector& utf32) { std::unordered_map histogram; for (char32 ch : utf32) { // Determine the codepage base. For the Indic scripts, Khmer and Javanese, it is // sufficient to divide by kIndicCodePageSize but Myanmar is all over the // unicode code space, so use its script id. int base = ch / kIndicCodePageSize; IcuErrorCode err; UScriptCode script_code = uscript_getScript(ch, err); if ((kMinIndicUnicode <= ch && ch <= kMaxJavaneseUnicode && script_code != USCRIPT_COMMON) || script_code == USCRIPT_MYANMAR) { if (script_code == USCRIPT_MYANMAR) base = static_cast(ViramaScript::kMyanmar) / kIndicCodePageSize; ++histogram[base]; } } if (!histogram.empty()) { int base = std::max_element(histogram.begin(), histogram.end(), CmpPairSecond) ->first; char32 codebase = static_cast(base * kIndicCodePageSize); // Check for validity. if (codebase == static_cast(ViramaScript::kMyanmar) || codebase == static_cast(ViramaScript::kJavanese) || codebase == static_cast(ViramaScript::kKhmer) || (static_cast(ViramaScript::kDevanagari) <= codebase && codebase <= static_cast(ViramaScript::kSinhala))) { return static_cast(codebase); } } return ViramaScript::kNonVirama; } // Returns true if the given UTF-32 unicode is a "virama" character. /* static */ bool Validator::IsVirama(char32 unicode) { return (kMinIndicUnicode <= unicode && unicode <= kMaxSinhalaUnicode && (unicode & 0x7f) == 0x4d) || unicode == kSinhalaVirama || unicode == kJavaneseVirama || unicode == kMyanmarVirama || unicode == kKhmerVirama; } // Returns true if the given UTF-32 unicode is a vedic accent. /* static */ bool Validator::IsVedicAccent(char32 unicode) { return (0x1cd0 <= unicode && unicode < 0x1d00) || (0xa8e0 <= unicode && unicode <= 0xa8f7) || (0x951 <= unicode && unicode <= 0x954); } // Returns true if the script is one that uses subscripts for conjuncts. bool Validator::IsSubscriptScript() const { return script_ == ViramaScript::kTelugu || script_ == ViramaScript::kKannada || script_ == ViramaScript::kJavanese || script_ == ViramaScript::kMyanmar || script_ == ViramaScript::kKhmer; } void Validator::ComputeClassCodes(const std::vector& text) { codes_.reserve(text.size()); for (char32 c : text) { codes_.push_back(std::make_pair(UnicodeToCharClass(c), c)); } } // Resets to the initial state. void Validator::Clear() { codes_.clear(); parts_.clear(); output_.clear(); codes_used_ = 0; output_used_ = 0; } } // namespace tesseract