/****************************************************************************** ** Filename: intmatcher.c ** Purpose: Generic high level classification routines. ** Author: Robert Moss ** History: Wed Feb 13 17:35:28 MST 1991, RWM, Created. ** Mon Mar 11 16:33:02 MST 1991, RWM, Modified to add ** support for adaptive matching. ** (c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ******************************************************************************/ /**---------------------------------------------------------------------------- Include Files and Type Defines ----------------------------------------------------------------------------**/ #include "intmatcher.h" #include "intproto.h" #include "tordvars.h" #include "callcpp.h" #include "scrollview.h" #include "globals.h" #include "classify.h" #include #define CLASS_MASK_SIZE ((MAX_NUM_CLASSES*NUM_BITS_PER_CLASS \ +BITS_PER_WERD-1)/BITS_PER_WERD) /**---------------------------------------------------------------------------- Global Data Definitions and Declarations ----------------------------------------------------------------------------**/ #define SE_TABLE_BITS 9 #define SE_TABLE_SIZE 512 #define TEMPLATE_CACHE 2 static uinT8 SimilarityEvidenceTable[SE_TABLE_SIZE]; static uinT8 offset_table[256] = { 255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; static uinT8 next_table[256] = { 0, 0, 0, 0x2, 0, 0x4, 0x4, 0x6, 0, 0x8, 0x8, 0x0a, 0x08, 0x0c, 0x0c, 0x0e, 0, 0x10, 0x10, 0x12, 0x10, 0x14, 0x14, 0x16, 0x10, 0x18, 0x18, 0x1a, 0x18, 0x1c, 0x1c, 0x1e, 0, 0x20, 0x20, 0x22, 0x20, 0x24, 0x24, 0x26, 0x20, 0x28, 0x28, 0x2a, 0x28, 0x2c, 0x2c, 0x2e, 0x20, 0x30, 0x30, 0x32, 0x30, 0x34, 0x34, 0x36, 0x30, 0x38, 0x38, 0x3a, 0x38, 0x3c, 0x3c, 0x3e, 0, 0x40, 0x40, 0x42, 0x40, 0x44, 0x44, 0x46, 0x40, 0x48, 0x48, 0x4a, 0x48, 0x4c, 0x4c, 0x4e, 0x40, 0x50, 0x50, 0x52, 0x50, 0x54, 0x54, 0x56, 0x50, 0x58, 0x58, 0x5a, 0x58, 0x5c, 0x5c, 0x5e, 0x40, 0x60, 0x60, 0x62, 0x60, 0x64, 0x64, 0x66, 0x60, 0x68, 0x68, 0x6a, 0x68, 0x6c, 0x6c, 0x6e, 0x60, 0x70, 0x70, 0x72, 0x70, 0x74, 0x74, 0x76, 0x70, 0x78, 0x78, 0x7a, 0x78, 0x7c, 0x7c, 0x7e, 0, 0x80, 0x80, 0x82, 0x80, 0x84, 0x84, 0x86, 0x80, 0x88, 0x88, 0x8a, 0x88, 0x8c, 0x8c, 0x8e, 0x80, 0x90, 0x90, 0x92, 0x90, 0x94, 0x94, 0x96, 0x90, 0x98, 0x98, 0x9a, 0x98, 0x9c, 0x9c, 0x9e, 0x80, 0xa0, 0xa0, 0xa2, 0xa0, 0xa4, 0xa4, 0xa6, 0xa0, 0xa8, 0xa8, 0xaa, 0xa8, 0xac, 0xac, 0xae, 0xa0, 0xb0, 0xb0, 0xb2, 0xb0, 0xb4, 0xb4, 0xb6, 0xb0, 0xb8, 0xb8, 0xba, 0xb8, 0xbc, 0xbc, 0xbe, 0x80, 0xc0, 0xc0, 0xc2, 0xc0, 0xc4, 0xc4, 0xc6, 0xc0, 0xc8, 0xc8, 0xca, 0xc8, 0xcc, 0xcc, 0xce, 0xc0, 0xd0, 0xd0, 0xd2, 0xd0, 0xd4, 0xd4, 0xd6, 0xd0, 0xd8, 0xd8, 0xda, 0xd8, 0xdc, 0xdc, 0xde, 0xc0, 0xe0, 0xe0, 0xe2, 0xe0, 0xe4, 0xe4, 0xe6, 0xe0, 0xe8, 0xe8, 0xea, 0xe8, 0xec, 0xec, 0xee, 0xe0, 0xf0, 0xf0, 0xf2, 0xf0, 0xf4, 0xf4, 0xf6, 0xf0, 0xf8, 0xf8, 0xfa, 0xf8, 0xfc, 0xfc, 0xfe }; static uinT32 EvidenceTableMask; static uinT32 MultTruncShiftBits; static uinT32 TableTruncShiftBits; uinT32 EvidenceMultMask; static inT16 LocalMatcherMultiplier; INT_VAR(classify_class_pruner_threshold, 229, "Class Pruner Threshold 0-255: "); INT_VAR(classify_class_pruner_multiplier, 30, "Class Pruner Multiplier 0-255: "); INT_VAR(classify_integer_matcher_multiplier, 14, "Integer Matcher Multiplier 0-255: "); INT_VAR(classify_int_theta_fudge, 128, "Integer Matcher Theta Fudge 0-255: "); INT_VAR(classify_cp_cutoff_strength, 7, "Class Pruner CutoffStrength: "); INT_VAR(classify_evidence_table_bits, 9, "Bits in Similarity to Evidence Lookup 8-9: "); INT_VAR(classify_int_evidence_trunc_bits, 14, "Integer Evidence Truncation Bits (Distance) 8-14: "); double_VAR(classify_se_exponential_multiplier, 0, "Similarity to Evidence Table Exponential Multiplier: "); double_VAR(classify_similarity_center, 0.0075, "Center of Similarity Curve: "); INT_VAR(classify_adapt_proto_thresh, 230, "Threshold for good protos during adaptive 0-255: "); INT_VAR(classify_adapt_feature_thresh, 230, "Threshold for good features during adaptive 0-255: "); BOOL_VAR(disable_character_fragments, FALSE, "Do not include character fragments in the" " results of the classifier"); BOOL_VAR(matcher_debug_separate_windows, FALSE, "Use two different windows for debugging the matching: " "One for the protos and one for the features."); int protoword_lookups; int zero_protowords; int proto_shifts; int set_proto_bits; int config_shifts; int set_config_bits; /**---------------------------------------------------------------------------- Public Code ----------------------------------------------------------------------------**/ /*---------------------------------------------------------------------------*/ namespace tesseract { int Classify::ClassPruner(INT_TEMPLATES IntTemplates, inT16 NumFeatures, INT_FEATURE_ARRAY Features, CLASS_NORMALIZATION_ARRAY NormalizationFactors, CLASS_CUTOFF_ARRAY ExpectedNumFeatures, CLASS_PRUNER_RESULTS Results, int Debug) { /* ** Parameters: ** IntTemplates Class pruner tables ** NumFeatures Number of features in blob ** Features Array of features ** NormalizationFactors Array of fudge factors from blob ** normalization process ** (by CLASS_INDEX) ** ExpectedNumFeatures Array of expected number of features ** for each class ** (by CLASS_INDEX) ** Results Sorted Array of pruned classes ** (by CLASS_ID) ** Debug Debugger flag: 1=debugger on ** Globals: ** classify_class_pruner_threshold Cutoff threshold ** classify_class_pruner_multiplier Normalization factor multiplier ** Operation: ** Prune the classes using a modified fast match table. ** Return a sorted list of classes along with the number ** of pruned classes in that list. ** Return: Number of pruned classes. ** Exceptions: none ** History: Tue Feb 19 10:24:24 MST 1991, RWM, Created. */ uinT32 PrunerWord; inT32 class_index; //index to class int Word; uinT32 *BasePrunerAddress; uinT32 feature_address; //current feature index INT_FEATURE feature; //current feature CLASS_PRUNER *ClassPruner; int PrunerSet; int NumPruners; inT32 feature_index; //current feature static int ClassCount[MAX_NUM_CLASSES]; static int NormCount[MAX_NUM_CLASSES]; static int SortKey[MAX_NUM_CLASSES + 1]; static int SortIndex[MAX_NUM_CLASSES + 1]; int out_class; int MaxNumClasses; int MaxCount; int NumClasses; FLOAT32 max_rating; //max allowed rating int *ClassCountPtr; CLASS_ID class_id; MaxNumClasses = IntTemplates->NumClasses; /* Clear Class Counts */ ClassCountPtr = &(ClassCount[0]); for (class_id = 0; class_id < MaxNumClasses; class_id++) { *ClassCountPtr++ = 0; } /* Update Class Counts */ NumPruners = IntTemplates->NumClassPruners; for (feature_index = 0; feature_index < NumFeatures; feature_index++) { feature = &Features[feature_index]; feature_address = (((feature->X * NUM_CP_BUCKETS >> 8) * NUM_CP_BUCKETS + (feature->Y * NUM_CP_BUCKETS >> 8)) * NUM_CP_BUCKETS + (feature->Theta * NUM_CP_BUCKETS >> 8)) << 1; ClassPruner = IntTemplates->ClassPruner; class_index = 0; for (PrunerSet = 0; PrunerSet < NumPruners; PrunerSet++, ClassPruner++) { BasePrunerAddress = (uinT32 *) (*ClassPruner) + feature_address; for (Word = 0; Word < WERDS_PER_CP_VECTOR; Word++) { PrunerWord = *BasePrunerAddress++; // This inner loop is unrolled to speed up the ClassPruner. // Currently gcc would not unroll it unless it is set to O3 // level of optimization or -funroll-loops is specified. /* uinT32 class_mask = (1 << NUM_BITS_PER_CLASS) - 1; for (int bit = 0; bit < BITS_PER_WERD/NUM_BITS_PER_CLASS; bit++) { ClassCount[class_index++] += PrunerWord & class_mask; PrunerWord >>= NUM_BITS_PER_CLASS; } */ ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; PrunerWord >>= 2; ClassCount[class_index++] += cp_maps[PrunerWord & 3]; } } } /* Adjust Class Counts for Number of Expected Features */ for (class_id = 0; class_id < MaxNumClasses; class_id++) { if (NumFeatures < ExpectedNumFeatures[class_id]) { int deficit = ExpectedNumFeatures[class_id] - NumFeatures; ClassCount[class_id] -= ClassCount[class_id] * deficit / (NumFeatures*classify_cp_cutoff_strength + deficit); } if (!unicharset.get_enabled(class_id)) ClassCount[class_id] = 0; // This char is disabled! // Do not include character fragments in the class pruner // results if disable_character_fragments is true. if (disable_character_fragments && unicharset.get_fragment(class_id)) { ClassCount[class_id] = 0; } } /* Adjust Class Counts for Normalization Factors */ MaxCount = 0; for (class_id = 0; class_id < MaxNumClasses; class_id++) { NormCount[class_id] = ClassCount[class_id] - ((classify_class_pruner_multiplier * NormalizationFactors[class_id]) >> 8) * cp_maps[3] / 3; if (NormCount[class_id] > MaxCount && // This additional check is added in order to ensure that // the classifier will return at least one non-fragmented // character match. // TODO(daria): verify that this helps accuracy and does not // hurt performance. !unicharset.get_fragment(class_id)) { MaxCount = NormCount[class_id]; } } /* Prune Classes */ MaxCount *= classify_class_pruner_threshold; MaxCount >>= 8; /* Select Classes */ if (MaxCount < 1) MaxCount = 1; NumClasses = 0; for (class_id = 0; class_id < MaxNumClasses; class_id++) { if (NormCount[class_id] >= MaxCount) { NumClasses++; SortIndex[NumClasses] = class_id; SortKey[NumClasses] = NormCount[class_id]; } } /* Sort Classes using Heapsort Algorithm */ if (NumClasses > 1) HeapSort(NumClasses, SortKey, SortIndex); if (tord_display_ratings > 1) { cprintf ("CP:%d classes, %d features:\n", NumClasses, NumFeatures); for (class_id = 0; class_id < NumClasses; class_id++) { cprintf ("%s:C=%d, E=%d, N=%d, Rat=%d\n", unicharset.debug_str(SortIndex[NumClasses - class_id]).string(), ClassCount[SortIndex[NumClasses - class_id]], ExpectedNumFeatures[SortIndex[NumClasses - class_id]], SortKey[NumClasses - class_id], 1010 - 1000 * SortKey[NumClasses - class_id] / (cp_maps[3] * NumFeatures)); } if (tord_display_ratings > 2) { NumPruners = IntTemplates->NumClassPruners; for (feature_index = 0; feature_index < NumFeatures; feature_index++) { cprintf ("F=%3d,", feature_index); feature = &Features[feature_index]; feature_address = (((feature->X * NUM_CP_BUCKETS >> 8) * NUM_CP_BUCKETS + (feature->Y * NUM_CP_BUCKETS >> 8)) * NUM_CP_BUCKETS + (feature->Theta * NUM_CP_BUCKETS >> 8)) << 1; ClassPruner = IntTemplates->ClassPruner; class_index = 0; for (PrunerSet = 0; PrunerSet < NumPruners; PrunerSet++, ClassPruner++) { BasePrunerAddress = (uinT32 *) (*ClassPruner) + feature_address; for (Word = 0; Word < WERDS_PER_CP_VECTOR; Word++) { PrunerWord = *BasePrunerAddress++; for (class_id = 0; class_id < 16; class_id++, class_index++) { if (NormCount[class_index] >= MaxCount) cprintf (" %s=%d,", unicharset.id_to_unichar(class_index), PrunerWord & 3); PrunerWord >>= 2; } } } cprintf ("\n"); } cprintf ("Adjustments:"); for (class_id = 0; class_id < MaxNumClasses; class_id++) { if (NormCount[class_id] > MaxCount) cprintf (" %s=%d,", unicharset.id_to_unichar(class_id), -((classify_class_pruner_multiplier * NormalizationFactors[class_id]) >> 8) * cp_maps[3] / 3); } cprintf ("\n"); } } /* Set Up Results */ max_rating = 0.0f; for (class_id = 0, out_class = 0; class_id < NumClasses; class_id++) { Results[out_class].Class = SortIndex[NumClasses - class_id]; Results[out_class].Rating = 1.0 - SortKey[NumClasses - class_id] / ((float) cp_maps[3] * NumFeatures); out_class++; } NumClasses = out_class; return NumClasses; } } // namespace tesseract /*---------------------------------------------------------------------------*/ void IntegerMatcher(INT_CLASS ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask, uinT16 BlobLength, inT16 NumFeatures, INT_FEATURE_ARRAY Features, uinT8 NormalizationFactor, INT_RESULT Result, int Debug) { /* ** Parameters: ** ClassTemplate Prototypes & tables for a class ** BlobLength Length of unormalized blob ** NumFeatures Number of features in blob ** Features Array of features ** NormalizationFactor Fudge factor from blob ** normalization process ** Result Class rating & configuration: ** (0.0 -> 1.0), 0=good, 1=bad ** Debug Debugger flag: 1=debugger on ** Globals: ** LocalMatcherMultiplier Normalization factor multiplier ** classify_int_theta_fudge Theta fudge factor used for ** evidence calculation ** Operation: ** IntegerMatcher returns the best configuration and rating ** for a single class. The class matched against is determined ** by the uniqueness of the ClassTemplate parameter. The ** best rating and its associated configuration are returned. ** Return: ** Exceptions: none ** History: Tue Feb 19 16:36:23 MST 1991, RWM, Created. */ static uinT8 FeatureEvidence[MAX_NUM_CONFIGS]; static int SumOfFeatureEvidence[MAX_NUM_CONFIGS]; static uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX]; int Feature; int BestMatch; if (MatchDebuggingOn (Debug)) cprintf ("Integer Matcher -------------------------------------------\n"); IMClearTables(ClassTemplate, SumOfFeatureEvidence, ProtoEvidence); Result->FeatureMisses = 0; for (Feature = 0; Feature < NumFeatures; Feature++) { int csum = IMUpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask, Feature, &(Features[Feature]), FeatureEvidence, SumOfFeatureEvidence, ProtoEvidence, Debug); // Count features that were missed over all configs. if (csum == 0) Result->FeatureMisses++; } #ifndef GRAPHICS_DISABLED if (PrintProtoMatchesOn (Debug) || PrintMatchSummaryOn (Debug)) IMDebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, SumOfFeatureEvidence, ProtoEvidence, NumFeatures, Debug); if (DisplayProtoMatchesOn (Debug)) IMDisplayProtoDebugInfo(ClassTemplate, ProtoMask, ConfigMask, ProtoEvidence, Debug); if (DisplayFeatureMatchesOn (Debug)) IMDisplayFeatureDebugInfo(ClassTemplate, ProtoMask, ConfigMask, NumFeatures, Features, Debug); #endif IMUpdateSumOfProtoEvidences(ClassTemplate, ConfigMask, SumOfFeatureEvidence, ProtoEvidence, NumFeatures); IMNormalizeSumOfEvidences(ClassTemplate, SumOfFeatureEvidence, NumFeatures, NumFeatures); BestMatch = IMFindBestMatch(ClassTemplate, SumOfFeatureEvidence, BlobLength, NormalizationFactor, Result); #ifndef GRAPHICS_DISABLED if (PrintMatchSummaryOn (Debug)) IMDebugBestMatch(BestMatch, Result, BlobLength, NormalizationFactor); if (MatchDebuggingOn (Debug)) cprintf ("Match Complete --------------------------------------------\n"); #endif } /*---------------------------------------------------------------------------*/ int FindGoodProtos(INT_CLASS ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask, uinT16 BlobLength, inT16 NumFeatures, INT_FEATURE_ARRAY Features, PROTO_ID *ProtoArray, int Debug) { /* ** Parameters: ** ClassTemplate Prototypes & tables for a class ** ProtoMask AND Mask for proto word ** ConfigMask AND Mask for config word ** BlobLength Length of unormalized blob ** NumFeatures Number of features in blob ** Features Array of features ** ProtoArray Array of good protos ** Debug Debugger flag: 1=debugger on ** Globals: ** LocalMatcherMultiplier Normalization factor multiplier ** classify_int_theta_fudge Theta fudge factor used for ** evidence calculation ** classify_adapt_proto_thresh Threshold for good protos ** Operation: ** FindGoodProtos finds all protos whose normalized proto-evidence ** exceed classify_adapt_proto_thresh. The list is ordered by increasing ** proto id number. ** Return: ** Number of good protos in ProtoArray. ** Exceptions: none ** History: Tue Mar 12 17:09:26 MST 1991, RWM, Created */ static uinT8 FeatureEvidence[MAX_NUM_CONFIGS]; static int SumOfFeatureEvidence[MAX_NUM_CONFIGS]; static uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX]; int Feature; register uinT8 *UINT8Pointer; register int ProtoIndex; int NumProtos; int NumGoodProtos; uinT16 ActualProtoNum; register int Temp; /* DEBUG opening heading */ if (MatchDebuggingOn (Debug)) cprintf ("Find Good Protos -------------------------------------------\n"); IMClearTables(ClassTemplate, SumOfFeatureEvidence, ProtoEvidence); for (Feature = 0; Feature < NumFeatures; Feature++) IMUpdateTablesForFeature (ClassTemplate, ProtoMask, ConfigMask, Feature, &(Features[Feature]), FeatureEvidence, SumOfFeatureEvidence, ProtoEvidence, Debug); #ifndef GRAPHICS_DISABLED if (PrintProtoMatchesOn (Debug) || PrintMatchSummaryOn (Debug)) IMDebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, SumOfFeatureEvidence, ProtoEvidence, NumFeatures, Debug); #endif /* Average Proto Evidences & Find Good Protos */ NumProtos = ClassTemplate->NumProtos; NumGoodProtos = 0; for (ActualProtoNum = 0; ActualProtoNum < NumProtos; ActualProtoNum++) { /* Compute Average for Actual Proto */ Temp = 0; UINT8Pointer = &(ProtoEvidence[ActualProtoNum][0]); for (ProtoIndex = ClassTemplate->ProtoLengths[ActualProtoNum]; ProtoIndex > 0; ProtoIndex--, UINT8Pointer++) Temp += *UINT8Pointer; Temp /= ClassTemplate->ProtoLengths[ActualProtoNum]; /* Find Good Protos */ if (Temp >= classify_adapt_proto_thresh) { *ProtoArray = ActualProtoNum; ProtoArray++; NumGoodProtos++; } } if (MatchDebuggingOn (Debug)) cprintf ("Match Complete --------------------------------------------\n"); return NumGoodProtos; } /*---------------------------------------------------------------------------*/ int FindBadFeatures(INT_CLASS ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask, uinT16 BlobLength, inT16 NumFeatures, INT_FEATURE_ARRAY Features, FEATURE_ID *FeatureArray, int Debug) { /* ** Parameters: ** ClassTemplate Prototypes & tables for a class ** ProtoMask AND Mask for proto word ** ConfigMask AND Mask for config word ** BlobLength Length of unormalized blob ** NumFeatures Number of features in blob ** Features Array of features ** FeatureArray Array of bad features ** Debug Debugger flag: 1=debugger on ** Globals: ** LocalMatcherMultiplier Normalization factor multiplier ** classify_int_theta_fudge Theta fudge factor used for ** evidence calculation ** classify_adapt_feature_thresh Threshold for bad features ** Operation: ** FindBadFeatures finds all features whose maximum feature-evidence ** was less than classify_adapt_feature_thresh. The list is ordered by increasing ** feature number. ** Return: ** Number of bad features in FeatureArray. ** Exceptions: none ** History: Tue Mar 12 17:09:26 MST 1991, RWM, Created */ static uinT8 FeatureEvidence[MAX_NUM_CONFIGS]; static int SumOfFeatureEvidence[MAX_NUM_CONFIGS]; static uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX]; int Feature; register uinT8 *UINT8Pointer; register int ConfigNum; int NumConfigs; int NumBadFeatures; register int Temp; /* DEBUG opening heading */ if (MatchDebuggingOn (Debug)) cprintf ("Find Bad Features -------------------------------------------\n"); IMClearTables(ClassTemplate, SumOfFeatureEvidence, ProtoEvidence); NumBadFeatures = 0; NumConfigs = ClassTemplate->NumConfigs; for (Feature = 0; Feature < NumFeatures; Feature++) { IMUpdateTablesForFeature (ClassTemplate, ProtoMask, ConfigMask, Feature, &(Features[Feature]), FeatureEvidence, SumOfFeatureEvidence, ProtoEvidence, Debug); /* Find Best Evidence for Current Feature */ Temp = 0; UINT8Pointer = FeatureEvidence; for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++, UINT8Pointer++) if (*UINT8Pointer > Temp) Temp = *UINT8Pointer; /* Find Bad Features */ if (Temp < classify_adapt_feature_thresh) { *FeatureArray = Feature; FeatureArray++; NumBadFeatures++; } } #ifndef GRAPHICS_DISABLED if (PrintProtoMatchesOn (Debug) || PrintMatchSummaryOn (Debug)) IMDebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, SumOfFeatureEvidence, ProtoEvidence, NumFeatures, Debug); #endif if (MatchDebuggingOn (Debug)) cprintf ("Match Complete --------------------------------------------\n"); return NumBadFeatures; } /*---------------------------------------------------------------------------*/ void InitIntegerMatcher() { int i; uinT32 IntSimilarity; double Similarity; double Evidence; double ScaleFactor; /* Set default mode of operation of IntegerMatcher */ SetCharNormMatch(); /* Initialize table for evidence to similarity lookup */ for (i = 0; i < SE_TABLE_SIZE; i++) { IntSimilarity = i << (27 - SE_TABLE_BITS); Similarity = ((double) IntSimilarity) / 65536.0 / 65536.0; Evidence = Similarity / classify_similarity_center; Evidence *= Evidence; Evidence += 1.0; Evidence = 1.0 / Evidence; Evidence *= 255.0; if (classify_se_exponential_multiplier > 0.0) { ScaleFactor = 1.0 - exp (-classify_se_exponential_multiplier) * exp (classify_se_exponential_multiplier * ((double) i / SE_TABLE_SIZE)); if (ScaleFactor > 1.0) ScaleFactor = 1.0; if (ScaleFactor < 0.0) ScaleFactor = 0.0; Evidence *= ScaleFactor; } SimilarityEvidenceTable[i] = (uinT8) (Evidence + 0.5); } /* Initialize evidence computation variables */ EvidenceTableMask = ((1 << classify_evidence_table_bits) - 1) << (9 - classify_evidence_table_bits); MultTruncShiftBits = (14 - classify_int_evidence_trunc_bits); TableTruncShiftBits = (27 - SE_TABLE_BITS - (MultTruncShiftBits << 1)); EvidenceMultMask = ((1 << classify_int_evidence_trunc_bits) - 1); } /*-------------------------------------------------------------------------*/ void PrintIntMatcherStats(FILE *f) { fprintf (f, "protoword_lookups=%d, zero_protowords=%d, proto_shifts=%d\n", protoword_lookups, zero_protowords, proto_shifts); fprintf (f, "set_proto_bits=%d, config_shifts=%d, set_config_bits=%d\n", set_proto_bits, config_shifts, set_config_bits); } /*-------------------------------------------------------------------------*/ void SetProtoThresh(FLOAT32 Threshold) { classify_adapt_proto_thresh.set_value(255 * Threshold); if (classify_adapt_proto_thresh < 0) classify_adapt_proto_thresh.set_value(0); if (classify_adapt_proto_thresh > 255) classify_adapt_proto_thresh.set_value(255); } /*---------------------------------------------------------------------------*/ void SetFeatureThresh(FLOAT32 Threshold) { classify_adapt_feature_thresh.set_value(255 * Threshold); if (classify_adapt_feature_thresh < 0) classify_adapt_feature_thresh.set_value(0); if (classify_adapt_feature_thresh > 255) classify_adapt_feature_thresh.set_value(255); } /*--------------------------------------------------------------------------*/ void SetBaseLineMatch() { LocalMatcherMultiplier = 0; } /*--------------------------------------------------------------------------*/ void SetCharNormMatch() { LocalMatcherMultiplier = classify_integer_matcher_multiplier; } /**---------------------------------------------------------------------------- Private Code ----------------------------------------------------------------------------**/ /*---------------------------------------------------------------------------*/ void IMClearTables (INT_CLASS ClassTemplate, int SumOfFeatureEvidence[MAX_NUM_CONFIGS], uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX]) { /* ** Parameters: ** SumOfFeatureEvidence Sum of Feature Evidence Table ** NumConfigs Number of Configurations ** ProtoEvidence Prototype Evidence Table ** NumProtos Number of Prototypes ** Globals: ** Operation: ** Clear SumOfFeatureEvidence and ProtoEvidence tables. ** Return: ** Exceptions: none ** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created. */ int NumProtos = ClassTemplate->NumProtos; int NumConfigs = ClassTemplate->NumConfigs; memset(SumOfFeatureEvidence, 0, NumConfigs * sizeof(SumOfFeatureEvidence[0])); memset(ProtoEvidence, 0, NumProtos * sizeof(ProtoEvidence[0])); } /*---------------------------------------------------------------------------*/ void IMClearFeatureEvidenceTable (uinT8 FeatureEvidence[MAX_NUM_CONFIGS], int NumConfigs) { /* ** Parameters: ** FeatureEvidence Feature Evidence Table ** NumConfigs Number of Configurations ** Globals: ** Operation: ** Clear FeatureEvidence table. ** Return: ** Exceptions: none ** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created. */ memset(FeatureEvidence, 0, NumConfigs * sizeof(*FeatureEvidence)); } /*---------------------------------------------------------------------------*/ void IMDebugConfiguration(int FeatureNum, uinT16 ActualProtoNum, uinT8 Evidence, BIT_VECTOR ConfigMask, uinT32 ConfigWord) { /* ** Parameters: ** Globals: ** Operation: ** Print debugging information for Configuations ** Return: ** Exceptions: none ** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created. */ cprintf ("F = %3d, P = %3d, E = %3d, Configs = ", FeatureNum, (int) ActualProtoNum, (int) Evidence); while (ConfigWord) { if (ConfigWord & 1) cprintf ("1"); else cprintf ("0"); ConfigWord >>= 1; } cprintf ("\n"); } /*---------------------------------------------------------------------------*/ void IMDebugConfigurationSum(int FeatureNum, uinT8 *FeatureEvidence, inT32 ConfigCount) { /* ** Parameters: ** Globals: ** Operation: ** Print debugging information for Configuations ** Return: ** Exceptions: none ** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created. */ int ConfigNum; cprintf ("F=%3d, C=", (int) FeatureNum); for (ConfigNum = 0; ConfigNum < ConfigCount; ConfigNum++) { cprintf ("%4d", FeatureEvidence[ConfigNum]); } cprintf ("\n"); } /*---------------------------------------------------------------------------*/ int IMUpdateTablesForFeature (INT_CLASS ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask, int FeatureNum, INT_FEATURE Feature, uinT8 FeatureEvidence[MAX_NUM_CONFIGS], int SumOfFeatureEvidence[MAX_NUM_CONFIGS], uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX], int Debug) { /* ** Parameters: ** ClassTemplate Prototypes & tables for a class ** FeatureNum Current feature number (for DEBUG only) ** Feature Pointer to a feature struct ** FeatureEvidence Feature Evidence Table ** SumOfFeatureEvidence Sum of Feature Evidence Table ** ProtoEvidence Prototype Evidence Table ** Debug Debugger flag: 1=debugger on ** Globals: ** Operation: ** For the given feature: prune protos, compute evidence, update Feature Evidence, ** Proto Evidence, and Sum of Feature Evidence tables. ** Return: ** Exceptions: none ** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created. */ register uinT32 ConfigWord; register uinT32 ProtoWord; register uinT32 ProtoNum; register uinT32 ActualProtoNum; uinT8 proto_byte; inT32 proto_word_offset; inT32 proto_offset; uinT8 config_byte; inT32 config_offset; PROTO_SET ProtoSet; uinT32 *ProtoPrunerPtr; INT_PROTO Proto; int ProtoSetIndex; uinT8 Evidence; uinT32 XFeatureAddress; uinT32 YFeatureAddress; uinT32 ThetaFeatureAddress; register uinT8 *UINT8Pointer; register int ProtoIndex; uinT8 Temp; register int *IntPointer; int ConfigNum; register inT32 M3; register inT32 A3; register uinT32 A4; IMClearFeatureEvidenceTable(FeatureEvidence, ClassTemplate->NumConfigs); /* Precompute Feature Address offset for Proto Pruning */ XFeatureAddress = ((Feature->X >> 2) << 1); YFeatureAddress = (NUM_PP_BUCKETS << 1) + ((Feature->Y >> 2) << 1); ThetaFeatureAddress = (NUM_PP_BUCKETS << 2) + ((Feature->Theta >> 2) << 1); for (ProtoSetIndex = 0, ActualProtoNum = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) { ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex]; ProtoPrunerPtr = (uinT32 *) ((*ProtoSet).ProtoPruner); for (ProtoNum = 0; ProtoNum < PROTOS_PER_PROTO_SET; ProtoNum += (PROTOS_PER_PROTO_SET >> 1), ActualProtoNum += (PROTOS_PER_PROTO_SET >> 1), ProtoMask++, ProtoPrunerPtr++) { /* Prune Protos of current Proto Set */ ProtoWord = *(ProtoPrunerPtr + XFeatureAddress); ProtoWord &= *(ProtoPrunerPtr + YFeatureAddress); ProtoWord &= *(ProtoPrunerPtr + ThetaFeatureAddress); ProtoWord &= *ProtoMask; if (ProtoWord != 0) { proto_byte = ProtoWord & 0xff; ProtoWord >>= 8; proto_word_offset = 0; while (ProtoWord != 0 || proto_byte != 0) { while (proto_byte == 0) { proto_byte = ProtoWord & 0xff; ProtoWord >>= 8; proto_word_offset += 8; } proto_offset = offset_table[proto_byte] + proto_word_offset; proto_byte = next_table[proto_byte]; Proto = &(ProtoSet->Protos[ProtoNum + proto_offset]); ConfigWord = Proto->Configs[0]; A3 = (((Proto->A * (Feature->X - 128)) << 1) - (Proto->B * (Feature->Y - 128)) + (Proto->C << 9)); M3 = (((inT8) (Feature->Theta - Proto->Angle)) * classify_int_theta_fudge) << 1; if (A3 < 0) A3 = ~A3; if (M3 < 0) M3 = ~M3; A3 >>= MultTruncShiftBits; M3 >>= MultTruncShiftBits; if (A3 > EvidenceMultMask) A3 = EvidenceMultMask; if (M3 > EvidenceMultMask) M3 = EvidenceMultMask; A4 = (A3 * A3) + (M3 * M3); A4 >>= TableTruncShiftBits; if (A4 > EvidenceTableMask) Evidence = 0; else Evidence = SimilarityEvidenceTable[A4]; if (PrintFeatureMatchesOn (Debug)) IMDebugConfiguration (FeatureNum, ActualProtoNum + proto_offset, Evidence, ConfigMask, ConfigWord); ConfigWord &= *ConfigMask; UINT8Pointer = FeatureEvidence - 8; config_byte = 0; while (ConfigWord != 0 || config_byte != 0) { while (config_byte == 0) { config_byte = ConfigWord & 0xff; ConfigWord >>= 8; UINT8Pointer += 8; // config_shifts++; } config_offset = offset_table[config_byte]; config_byte = next_table[config_byte]; if (Evidence > UINT8Pointer[config_offset]) UINT8Pointer[config_offset] = Evidence; } UINT8Pointer = &(ProtoEvidence[ActualProtoNum + proto_offset][0]); for (ProtoIndex = ClassTemplate->ProtoLengths[ActualProtoNum + proto_offset]; ProtoIndex > 0; ProtoIndex--, UINT8Pointer++) { if (Evidence > *UINT8Pointer) { Temp = *UINT8Pointer; *UINT8Pointer = Evidence; Evidence = Temp; } else if (Evidence == 0) break; } } } } } if (PrintFeatureMatchesOn (Debug)) IMDebugConfigurationSum (FeatureNum, FeatureEvidence, ClassTemplate->NumConfigs); IntPointer = SumOfFeatureEvidence; UINT8Pointer = FeatureEvidence; int SumOverConfigs = 0; for (ConfigNum = ClassTemplate->NumConfigs; ConfigNum > 0; ConfigNum--) { int evidence = *UINT8Pointer++; SumOverConfigs += evidence; *IntPointer++ += evidence; } return SumOverConfigs; } /*---------------------------------------------------------------------------*/ #ifndef GRAPHICS_DISABLED void IMDebugFeatureProtoError (INT_CLASS ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask, int SumOfFeatureEvidence[MAX_NUM_CONFIGS], uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX], inT16 NumFeatures, int Debug) { /* ** Parameters: ** Globals: ** Operation: ** Print debugging information for Configuations ** Return: ** Exceptions: none ** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created. */ uinT8 *UINT8Pointer; int *IntPointer; FLOAT32 ProtoConfigs[MAX_NUM_CONFIGS]; int ConfigNum; uinT32 ConfigWord; int ProtoSetIndex; uinT16 ProtoNum; uinT8 ProtoWordNum; PROTO_SET ProtoSet; int ProtoIndex; int NumProtos; uinT16 ActualProtoNum; int Temp; int NumConfigs; NumProtos = ClassTemplate->NumProtos; NumConfigs = ClassTemplate->NumConfigs; if (PrintMatchSummaryOn (Debug)) { cprintf ("Configuration Mask:\n"); for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++) cprintf ("%1d", (((*ConfigMask) >> ConfigNum) & 1)); cprintf ("\n"); cprintf ("Feature Error for Configurations:\n"); for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++) cprintf (" %5.1f", 100.0 * (1.0 - (FLOAT32) SumOfFeatureEvidence[ConfigNum] / NumFeatures / 256.0)); cprintf ("\n\n\n"); } if (PrintMatchSummaryOn (Debug)) { cprintf ("Proto Mask:\n"); for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) { ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET); for (ProtoWordNum = 0; ProtoWordNum < 2; ProtoWordNum++, ProtoMask++) { ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET); for (ProtoNum = 0; ((ProtoNum < (PROTOS_PER_PROTO_SET >> 1)) && (ActualProtoNum < NumProtos)); ProtoNum++, ActualProtoNum++) cprintf ("%1d", (((*ProtoMask) >> ProtoNum) & 1)); cprintf ("\n"); } } cprintf ("\n"); } for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++) ProtoConfigs[ConfigNum] = 0; if (PrintProtoMatchesOn (Debug)) { cprintf ("Proto Evidence:\n"); for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) { ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex]; ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET); for (ProtoNum = 0; ((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < NumProtos)); ProtoNum++, ActualProtoNum++) { cprintf ("P %3d =", ActualProtoNum); Temp = 0; UINT8Pointer = &(ProtoEvidence[ActualProtoNum][0]); for (ProtoIndex = 0; ProtoIndex < ClassTemplate->ProtoLengths[ActualProtoNum]; ProtoIndex++, UINT8Pointer++) { cprintf (" %d", *UINT8Pointer); Temp += *UINT8Pointer; } cprintf (" = %6.4f%%\n", Temp / 256.0 / ClassTemplate->ProtoLengths[ActualProtoNum]); ConfigWord = (ProtoSet->Protos[ProtoNum]).Configs[0]; IntPointer = SumOfFeatureEvidence; ConfigNum = 0; while (ConfigWord) { cprintf ("%5d", ConfigWord & 1 ? Temp : 0); if (ConfigWord & 1) ProtoConfigs[ConfigNum] += Temp; IntPointer++; ConfigNum++; ConfigWord >>= 1; } cprintf ("\n"); } } } if (PrintMatchSummaryOn (Debug)) { cprintf ("Proto Error for Configurations:\n"); for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++) cprintf (" %5.1f", 100.0 * (1.0 - ProtoConfigs[ConfigNum] / ClassTemplate->ConfigLengths[ConfigNum] / 256.0)); cprintf ("\n\n"); } if (PrintProtoMatchesOn (Debug)) { cprintf ("Proto Sum for Configurations:\n"); for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++) cprintf (" %4.1f", ProtoConfigs[ConfigNum] / 256.0); cprintf ("\n\n"); cprintf ("Proto Length for Configurations:\n"); for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++) cprintf (" %4.1f", (float) ClassTemplate->ConfigLengths[ConfigNum]); cprintf ("\n\n"); } } /*---------------------------------------------------------------------------*/ void IMDisplayProtoDebugInfo (INT_CLASS ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask, uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX], int Debug) { register uinT8 *UINT8Pointer; register uinT32 ConfigWord; register uinT16 ProtoNum; register uinT16 ActualProtoNum; PROTO_SET ProtoSet; int ProtoSetIndex; int ProtoIndex; int NumProtos; register int Temp; InitIntMatchWindowIfReqd(); if (matcher_debug_separate_windows) { InitFeatureDisplayWindowIfReqd(); InitProtoDisplayWindowIfReqd(); } NumProtos = ClassTemplate->NumProtos; for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) { ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex]; ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET); for (ProtoNum = 0; ((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < NumProtos)); ProtoNum++, ActualProtoNum++) { /* Compute Average for Actual Proto */ Temp = 0; UINT8Pointer = &(ProtoEvidence[ActualProtoNum][0]); for (ProtoIndex = ClassTemplate->ProtoLengths[ActualProtoNum]; ProtoIndex > 0; ProtoIndex--, UINT8Pointer++) Temp += *UINT8Pointer; Temp /= ClassTemplate->ProtoLengths[ActualProtoNum]; ConfigWord = (ProtoSet->Protos[ProtoNum]).Configs[0]; ConfigWord &= *ConfigMask; if (ConfigWord) { /* Update display for current proto */ if (ClipMatchEvidenceOn (Debug)) { if (Temp < classify_adapt_proto_thresh) DisplayIntProto (ClassTemplate, ActualProtoNum, (Temp / 255.0)); else DisplayIntProto (ClassTemplate, ActualProtoNum, (Temp / 255.0)); } else { DisplayIntProto (ClassTemplate, ActualProtoNum, (Temp / 255.0)); } } } } } /*---------------------------------------------------------------------------*/ void IMDisplayFeatureDebugInfo(INT_CLASS ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask, inT16 NumFeatures, INT_FEATURE_ARRAY Features, int Debug) { static uinT8 FeatureEvidence[MAX_NUM_CONFIGS]; static int SumOfFeatureEvidence[MAX_NUM_CONFIGS]; static uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX]; int Feature; register uinT8 *UINT8Pointer; register int ConfigNum; int NumConfigs; register int Temp; IMClearTables(ClassTemplate, SumOfFeatureEvidence, ProtoEvidence); InitIntMatchWindowIfReqd(); if (matcher_debug_separate_windows) { InitFeatureDisplayWindowIfReqd(); InitProtoDisplayWindowIfReqd(); } NumConfigs = ClassTemplate->NumConfigs; for (Feature = 0; Feature < NumFeatures; Feature++) { IMUpdateTablesForFeature (ClassTemplate, ProtoMask, ConfigMask, Feature, &(Features[Feature]), FeatureEvidence, SumOfFeatureEvidence, ProtoEvidence, 0); /* Find Best Evidence for Current Feature */ Temp = 0; UINT8Pointer = FeatureEvidence; for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++, UINT8Pointer++) if (*UINT8Pointer > Temp) Temp = *UINT8Pointer; /* Update display for current feature */ if (ClipMatchEvidenceOn (Debug)) { if (Temp < classify_adapt_feature_thresh) DisplayIntFeature (&(Features[Feature]), 0.0); else DisplayIntFeature (&(Features[Feature]), 1.0); } else { DisplayIntFeature (&(Features[Feature]), (Temp / 255.0)); } } } #endif /*---------------------------------------------------------------------------*/ void IMUpdateSumOfProtoEvidences (INT_CLASS ClassTemplate, BIT_VECTOR ConfigMask, int SumOfFeatureEvidence[MAX_NUM_CONFIGS], uinT8 ProtoEvidence[MAX_NUM_PROTOS][MAX_PROTO_INDEX], inT16 NumFeatures) { /* ** Parameters: ** Globals: ** Operation: ** Add sum of Proto Evidences into Sum Of Feature Evidence Array ** Return: ** Exceptions: none ** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created. */ register uinT8 *UINT8Pointer; register int *IntPointer; register uinT32 ConfigWord; int ProtoSetIndex; register uinT16 ProtoNum; PROTO_SET ProtoSet; register int ProtoIndex; int NumProtos; uinT16 ActualProtoNum; int Temp; NumProtos = ClassTemplate->NumProtos; for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) { ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex]; ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET); for (ProtoNum = 0; ((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < NumProtos)); ProtoNum++, ActualProtoNum++) { Temp = 0; UINT8Pointer = &(ProtoEvidence[ActualProtoNum][0]); for (ProtoIndex = ClassTemplate->ProtoLengths[ActualProtoNum]; ProtoIndex > 0; ProtoIndex--, UINT8Pointer++) Temp += *UINT8Pointer; ConfigWord = (ProtoSet->Protos[ProtoNum]).Configs[0]; ConfigWord &= *ConfigMask; IntPointer = SumOfFeatureEvidence; while (ConfigWord) { if (ConfigWord & 1) *IntPointer += Temp; IntPointer++; ConfigWord >>= 1; } } } } /*---------------------------------------------------------------------------*/ void IMNormalizeSumOfEvidences (INT_CLASS ClassTemplate, int SumOfFeatureEvidence[MAX_NUM_CONFIGS], inT16 NumFeatures, inT32 used_features) { /* ** Parameters: ** Globals: ** Operation: ** Normalize Sum of Proto and Feature Evidence by dividing by ** the sum of the Feature Lengths and the Proto Lengths for each ** configuration. ** Return: ** Exceptions: none ** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created. */ register int *IntPointer; register int ConfigNum; int NumConfigs; NumConfigs = ClassTemplate->NumConfigs; IntPointer = SumOfFeatureEvidence; for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++, IntPointer++) *IntPointer = (*IntPointer << 8) / (NumFeatures + ClassTemplate->ConfigLengths[ConfigNum]); } /*---------------------------------------------------------------------------*/ int IMFindBestMatch (INT_CLASS ClassTemplate, int SumOfFeatureEvidence[MAX_NUM_CONFIGS], uinT16 BlobLength, uinT8 NormalizationFactor, INT_RESULT Result) { /* ** Parameters: ** Globals: ** Operation: ** Find the best match for the current class and update the Result ** with the configuration and match rating. ** Return: ** The best normalized sum of evidences ** Exceptions: none ** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created. */ register int *IntPointer; register int ConfigNum; register int NumConfigs; register int BestMatch; register int Best2Match; NumConfigs = ClassTemplate->NumConfigs; /* Find best match */ BestMatch = 0; Best2Match = 0; IntPointer = SumOfFeatureEvidence; for (ConfigNum = 0; ConfigNum < NumConfigs; ConfigNum++, IntPointer++) { if (tord_display_ratings > 1) cprintf ("Config %d, rating=%d\n", ConfigNum, *IntPointer); if (*IntPointer > BestMatch) { if (BestMatch > 0) { Result->Config2 = Result->Config; Best2Match = BestMatch; } else Result->Config2 = ConfigNum; Result->Config = ConfigNum; BestMatch = *IntPointer; } else if (*IntPointer > Best2Match) { Result->Config2 = ConfigNum; Best2Match = *IntPointer; } } /* Compute Certainty Rating */ (*Result).Rating = ((65536.0 - BestMatch) / 65536.0 * BlobLength + LocalMatcherMultiplier * NormalizationFactor / 256.0) / (BlobLength + LocalMatcherMultiplier); return BestMatch; } /*---------------------------------------------------------------------------*/ #ifndef GRAPHICS_DISABLED void IMDebugBestMatch(int BestMatch, INT_RESULT Result, uinT16 BlobLength, uinT8 NormalizationFactor) { /* ** Parameters: ** Globals: ** Operation: ** Find the best match for the current class and update the Result ** Return: ** Exceptions: none ** History: Wed Feb 27 14:12:28 MST 1991, RWM, Created. */ cprintf ("Rating = %5.1f%% Best Config = %3d\n", 100.0 * ((*Result).Rating), (int) ((*Result).Config)); cprintf ("Matcher Error = %5.1f%% Blob Length = %3d Weight = %4.1f%%\n", 100.0 * (65536.0 - BestMatch) / 65536.0, (int) BlobLength, 100.0 * BlobLength / (BlobLength + LocalMatcherMultiplier)); cprintf ("Char Norm Error = %5.1f%% Norm Strength = %3d Weight = %4.1f%%\n", 100.0 * NormalizationFactor / 256.0, LocalMatcherMultiplier, 100.0 * LocalMatcherMultiplier / (BlobLength + LocalMatcherMultiplier)); } #endif /*---------------------------------------------------------------------------*/ void HeapSort (int n, register int ra[], register int rb[]) { /* ** Parameters: ** n Number of elements to sort ** ra Key array [1..n] ** rb Index array [1..n] ** Globals: ** Operation: ** Sort Key array in ascending order using heap sort ** algorithm. Also sort Index array that is tied to ** the key array. ** Return: ** Exceptions: none ** History: Tue Feb 19 10:24:24 MST 1991, RWM, Created. */ register int i, rra, rrb; int l, j, ir; l = (n >> 1) + 1; ir = n; for (;;) { if (l > 1) { rra = ra[--l]; rrb = rb[l]; } else { rra = ra[ir]; rrb = rb[ir]; ra[ir] = ra[1]; rb[ir] = rb[1]; if (--ir == 1) { ra[1] = rra; rb[1] = rrb; return; } } i = l; j = l << 1; while (j <= ir) { if (j < ir && ra[j] < ra[j + 1]) ++j; if (rra < ra[j]) { ra[i] = ra[j]; rb[i] = rb[j]; j += (i = j); } else j = ir + 1; } ra[i] = rra; rb[i] = rrb; } }