/////////////////////////////////////////////////////////////////////// // File: tesseractclass.h // Description: The Tesseract class. It holds/owns everything needed // to run Tesseract on a single language, and also a set of // sub-Tesseracts to run sub-languages. For thread safety, *every* // global variable goes in here, directly, or indirectly. // This makes it safe to run multiple Tesseracts in different // threads in parallel, and keeps the different language // instances separate. // Author: Ray Smith // Created: Fri Mar 07 08:17:01 PST 2008 // // (C) Copyright 2008, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_CCMAIN_TESSERACTCLASS_H_ #define TESSERACT_CCMAIN_TESSERACTCLASS_H_ #include "allheaders.h" #include "control.h" #include "debugpixa.h" #include "devanagari_processing.h" #include "docqual.h" #include "genericvector.h" #include "ocrclass.h" #include "params.h" #include "textord.h" #include "wordrec.h" class BLOB_CHOICE_LIST_CLIST; class BLOCK_LIST; struct OSResults; class PAGE_RES; class PAGE_RES_IT; struct Pix; class ROW; class SVMenuNode; class TBOX; class TO_BLOCK_LIST; class WERD; class WERD_CHOICE; class WERD_RES; // Top-level class for all tesseract global instance data. // This class either holds or points to all data used by an instance // of Tesseract, including the memory allocator. When this is // complete, Tesseract will be thread-safe. UNTIL THEN, IT IS NOT! // // NOTE to developers: Do not create cyclic dependencies through this class! // The directory dependency tree must remain a tree! The keep this clean, // lower-level code (eg in ccutil, the bottom level) must never need to // know about the content of a higher-level directory. // The following scheme will grant the easiest access to lower-level // global members without creating a cyclic dependency: // // Class Hierarchy (^ = inheritance): // // CCUtil (ccutil/ccutil.h) // ^ Members include: UNICHARSET // CUtil (cutil/cutil_class.h) // ^ Members include: TBLOB*, TEXTBLOCK* // CCStruct (ccstruct/ccstruct.h) // ^ Members include: Image // Classify (classify/classify.h) // ^ Members include: Dict // WordRec (wordrec/wordrec.h) // ^ Members include: WERD*, DENORM* // Tesseract (ccmain/tesseractclass.h) // Members include: Pix* // // Other important classes: // // TessBaseAPI (api/baseapi.h) // Members include: BLOCK_LIST*, PAGE_RES*, // Tesseract*, ImageThresholder* // Dict (dict/dict.h) // Members include: Image* (private) // // NOTE: that each level contains members that correspond to global // data that is defined (and used) at that level, not necessarily where // the type is defined so for instance: // BOOL_VAR_H(textord_show_blobs, false, "Display unsorted blobs"); // goes inside the Textord class, not the cc_util class. namespace tesseract { class ColumnFinder; class DocumentData; class EquationDetect; class ImageData; class LSTMRecognizer; class Tesseract; // A collection of various variables for statistics and debugging. struct TesseractStats { TesseractStats() : adaption_word_number(0), doc_blob_quality(0), doc_outline_errs(0), doc_char_quality(0), good_char_count(0), doc_good_char_quality(0), word_count(0), dict_words(0), tilde_crunch_written(false), last_char_was_newline(true), last_char_was_tilde(false), write_results_empty_block(true) {} inT32 adaption_word_number; inT16 doc_blob_quality; inT16 doc_outline_errs; inT16 doc_char_quality; inT16 good_char_count; inT16 doc_good_char_quality; inT32 word_count; // count of word in the document inT32 dict_words; // number of dicitionary words in the document STRING dump_words_str; // accumulator used by dump_words() // Flags used by write_results() bool tilde_crunch_written; bool last_char_was_newline; bool last_char_was_tilde; bool write_results_empty_block; }; // Struct to hold all the pointers to relevant data for processing a word. struct WordData { WordData() : word(NULL), row(NULL), block(NULL), prev_word(NULL) {} explicit WordData(const PAGE_RES_IT& page_res_it) : word(page_res_it.word()), row(page_res_it.row()->row), block(page_res_it.block()->block), prev_word(NULL) {} WordData(BLOCK* block_in, ROW* row_in, WERD_RES* word_res) : word(word_res), row(row_in), block(block_in), prev_word(NULL) {} WERD_RES* word; ROW* row; BLOCK* block; WordData* prev_word; PointerVector lang_words; }; // Definition of a Tesseract WordRecognizer. The WordData provides the context // of row/block, in_word holds an initialized, possibly pre-classified word, // that the recognizer may or may not consume (but if so it sets *in_word=NULL) // and produces one or more output words in out_words, which may be the // consumed in_word, or may be generated independently. // This api allows both a conventional tesseract classifier to work, or a // line-level classifier that generates multiple words from a merged input. typedef void (Tesseract::*WordRecognizer)(const WordData& word_data, WERD_RES** in_word, PointerVector* out_words); class Tesseract : public Wordrec { public: Tesseract(); ~Tesseract(); // Clear as much used memory as possible without resetting the adaptive // classifier or losing any other classifier data. void Clear(); // Clear all memory of adaption for this and all subclassifiers. void ResetAdaptiveClassifier(); // Clear the document dictionary for this and all subclassifiers. void ResetDocumentDictionary(); // Set the equation detector. void SetEquationDetect(EquationDetect* detector); // Simple accessors. const FCOORD& reskew() const { return reskew_; } // Destroy any existing pix and return a pointer to the pointer. Pix** mutable_pix_binary() { pixDestroy(&pix_binary_); return &pix_binary_; } Pix* pix_binary() const { return pix_binary_; } Pix* pix_grey() const { return pix_grey_; } void set_pix_grey(Pix* grey_pix) { pixDestroy(&pix_grey_); pix_grey_ = grey_pix; } Pix* pix_original() const { return pix_original_; } // Takes ownership of the given original_pix. void set_pix_original(Pix* original_pix) { pixDestroy(&pix_original_); pix_original_ = original_pix; // Clone to sublangs as well. for (int i = 0; i < sub_langs_.size(); ++i) sub_langs_[i]->set_pix_original( original_pix ? pixClone(original_pix) : nullptr); } // Returns a pointer to a Pix representing the best available (original) image // of the page. Can be of any bit depth, but never color-mapped, as that has // always been dealt with. Note that in grey and color, 0 is black and 255 is // white. If the input was binary, then black is 1 and white is 0. // To tell the difference pixGetDepth() will return 32, 8 or 1. // In any case, the return value is a borrowed Pix, and should not be // deleted or pixDestroyed. Pix* BestPix() const { return pix_original_; } void set_pix_thresholds(Pix* thresholds) { pixDestroy(&pix_thresholds_); pix_thresholds_ = thresholds; } int source_resolution() const { return source_resolution_; } void set_source_resolution(int ppi) { source_resolution_ = ppi; } int ImageWidth() const { return pixGetWidth(pix_binary_); } int ImageHeight() const { return pixGetHeight(pix_binary_); } Pix* scaled_color() const { return scaled_color_; } int scaled_factor() const { return scaled_factor_; } void SetScaledColor(int factor, Pix* color) { scaled_factor_ = factor; scaled_color_ = color; } const Textord& textord() const { return textord_; } Textord* mutable_textord() { return &textord_; } bool right_to_left() const { return right_to_left_; } int num_sub_langs() const { return sub_langs_.size(); } Tesseract* get_sub_lang(int index) const { return sub_langs_[index]; } // Returns true if any language uses Tesseract (as opposed to LSTM). bool AnyTessLang() const { if (tessedit_ocr_engine_mode != OEM_LSTM_ONLY) return true; for (int i = 0; i < sub_langs_.size(); ++i) { if (sub_langs_[i]->tessedit_ocr_engine_mode != OEM_LSTM_ONLY) return true; } return false; } // Returns true if any language uses the LSTM. bool AnyLSTMLang() const { if (tessedit_ocr_engine_mode != OEM_TESSERACT_ONLY) return true; for (int i = 0; i < sub_langs_.size(); ++i) { if (sub_langs_[i]->tessedit_ocr_engine_mode != OEM_TESSERACT_ONLY) return true; } return false; } void SetBlackAndWhitelist(); // Perform steps to prepare underlying binary image/other data structures for // page segmentation. Uses the strategy specified in the global variable // pageseg_devanagari_split_strategy for perform splitting while preparing for // page segmentation. void PrepareForPageseg(); // Perform steps to prepare underlying binary image/other data structures for // Tesseract OCR. The current segmentation is required by this method. // Uses the strategy specified in the global variable // ocr_devanagari_split_strategy for performing splitting while preparing for // Tesseract ocr. void PrepareForTessOCR(BLOCK_LIST* block_list, Tesseract* osd_tess, OSResults* osr); int SegmentPage(const STRING* input_file, BLOCK_LIST* blocks, Tesseract* osd_tess, OSResults* osr); void SetupWordScripts(BLOCK_LIST* blocks); int AutoPageSeg(PageSegMode pageseg_mode, BLOCK_LIST* blocks, TO_BLOCK_LIST* to_blocks, BLOBNBOX_LIST* diacritic_blobs, Tesseract* osd_tess, OSResults* osr); ColumnFinder* SetupPageSegAndDetectOrientation( PageSegMode pageseg_mode, BLOCK_LIST* blocks, Tesseract* osd_tess, OSResults* osr, TO_BLOCK_LIST* to_blocks, Pix** photo_mask_pix, Pix** music_mask_pix); // par_control.cpp void PrerecAllWordsPar(const GenericVector& words); //// linerec.cpp // Generates training data for training a line recognizer, eg LSTM. // Breaks the page into lines, according to the boxes, and writes them to a // serialized DocumentData based on output_basename. void TrainLineRecognizer(const STRING& input_imagename, const STRING& output_basename, BLOCK_LIST *block_list); // Generates training data for training a line recognizer, eg LSTM. // Breaks the boxes into lines, normalizes them, converts to ImageData and // appends them to the given training_data. void TrainFromBoxes(const GenericVector& boxes, const GenericVector& texts, BLOCK_LIST *block_list, DocumentData* training_data); // Returns an Imagedata containing the image of the given textline, // and ground truth boxes/truth text if available in the input. // The image is not normalized in any way. ImageData* GetLineData(const TBOX& line_box, const GenericVector& boxes, const GenericVector& texts, int start_box, int end_box, const BLOCK& block); // Helper gets the image of a rectangle, using the block.re_rotation() if // needed to get to the image, and rotating the result back to horizontal // layout. (CJK characters will be on their left sides) The vertical text flag // is set in the returned ImageData if the text was originally vertical, which // can be used to invoke a different CJK recognition engine. The revised_box // is also returned to enable calculation of output bounding boxes. ImageData* GetRectImage(const TBOX& box, const BLOCK& block, int padding, TBOX* revised_box) const; // Recognizes a word or group of words, converting to WERD_RES in *words. // Analogous to classify_word_pass1, but can handle a group of words as well. void LSTMRecognizeWord(const BLOCK& block, ROW *row, WERD_RES *word, PointerVector* words); // Apply segmentation search to the given set of words, within the constraints // of the existing ratings matrix. If there is already a best_choice on a word // leaves it untouched and just sets the done/accepted etc flags. void SearchWords(PointerVector* words); //// control.h ///////////////////////////////////////////////////////// bool ProcessTargetWord(const TBOX& word_box, const TBOX& target_word_box, const char* word_config, int pass); // Sets up the words ready for whichever engine is to be run void SetupAllWordsPassN(int pass_n, const TBOX* target_word_box, const char* word_config, PAGE_RES* page_res, GenericVector* words); // Sets up the single word ready for whichever engine is to be run. void SetupWordPassN(int pass_n, WordData* word); // Runs word recognition on all the words. bool RecogAllWordsPassN(int pass_n, ETEXT_DESC* monitor, PAGE_RES_IT* pr_it, GenericVector* words); bool recog_all_words(PAGE_RES* page_res, ETEXT_DESC* monitor, const TBOX* target_word_box, const char* word_config, int dopasses); void rejection_passes(PAGE_RES* page_res, ETEXT_DESC* monitor, const TBOX* target_word_box, const char* word_config); void bigram_correction_pass(PAGE_RES *page_res); void blamer_pass(PAGE_RES* page_res); // Sets script positions and detects smallcaps on all output words. void script_pos_pass(PAGE_RES* page_res); // Helper to recognize the word using the given (language-specific) tesseract. // Returns positive if this recognizer found more new best words than the // number kept from best_words. int RetryWithLanguage(const WordData& word_data, WordRecognizer recognizer, bool debug, WERD_RES** in_word, PointerVector* best_words); // Moves good-looking "noise"/diacritics from the reject list to the main // blob list on the current word. Returns true if anything was done, and // sets make_next_word_fuzzy if blob(s) were added to the end of the word. bool ReassignDiacritics(int pass, PAGE_RES_IT* pr_it, bool* make_next_word_fuzzy); // Attempts to put noise/diacritic outlines into the blobs that they overlap. // Input: a set of noisy outlines that probably belong to the real_word. // Output: outlines that overlapped blobs are set to NULL and put back into // the word, either in the blobs or in the reject list. void AssignDiacriticsToOverlappingBlobs( const GenericVector& outlines, int pass, WERD* real_word, PAGE_RES_IT* pr_it, GenericVector* word_wanted, GenericVector* overlapped_any_blob, GenericVector* target_blobs); // Attempts to assign non-overlapping outlines to their nearest blobs or // make new blobs out of them. void AssignDiacriticsToNewBlobs(const GenericVector& outlines, int pass, WERD* real_word, PAGE_RES_IT* pr_it, GenericVector* word_wanted, GenericVector* target_blobs); // Starting with ok_outlines set to indicate which outlines overlap the blob, // chooses the optimal set (approximately) and returns true if any outlines // are desired, in which case ok_outlines indicates which ones. bool SelectGoodDiacriticOutlines(int pass, float certainty_threshold, PAGE_RES_IT* pr_it, C_BLOB* blob, const GenericVector& outlines, int num_outlines, GenericVector* ok_outlines); // Classifies the given blob plus the outlines flagged by ok_outlines, undoes // the inclusion of the outlines, and returns the certainty of the raw choice. float ClassifyBlobPlusOutlines(const GenericVector& ok_outlines, const GenericVector& outlines, int pass_n, PAGE_RES_IT* pr_it, C_BLOB* blob, STRING* best_str); // Classifies the given blob (part of word_data->word->word) as an individual // word, using languages, chopper etc, returning only the certainty of the // best raw choice, and undoing all the work done to fake out the word. float ClassifyBlobAsWord(int pass_n, PAGE_RES_IT* pr_it, C_BLOB* blob, STRING* best_str, float* c2); void classify_word_and_language(int pass_n, PAGE_RES_IT* pr_it, WordData* word_data); void classify_word_pass1(const WordData& word_data, WERD_RES** in_word, PointerVector* out_words); void recog_pseudo_word(PAGE_RES* page_res, // blocks to check TBOX &selection_box); void fix_rep_char(PAGE_RES_IT* page_res_it); ACCEPTABLE_WERD_TYPE acceptable_word_string(const UNICHARSET& char_set, const char *s, const char *lengths); void match_word_pass_n(int pass_n, WERD_RES *word, ROW *row, BLOCK* block); void classify_word_pass2(const WordData& word_data, WERD_RES** in_word, PointerVector* out_words); void ReportXhtFixResult(bool accept_new_word, float new_x_ht, WERD_RES* word, WERD_RES* new_word); bool RunOldFixXht(WERD_RES *word, BLOCK* block, ROW *row); bool TrainedXheightFix(WERD_RES *word, BLOCK* block, ROW *row); // Runs recognition with the test baseline shift and x-height and returns true // if there was an improvement in recognition result. bool TestNewNormalization(int original_misfits, float baseline_shift, float new_x_ht, WERD_RES *word, BLOCK* block, ROW *row); BOOL8 recog_interactive(PAGE_RES_IT* pr_it); // Set fonts of this word. void set_word_fonts(WERD_RES *word); void font_recognition_pass(PAGE_RES* page_res); void dictionary_correction_pass(PAGE_RES* page_res); BOOL8 check_debug_pt(WERD_RES *word, int location); //// superscript.cpp //////////////////////////////////////////////////// bool SubAndSuperscriptFix(WERD_RES *word_res); void GetSubAndSuperscriptCandidates(const WERD_RES *word, int *num_rebuilt_leading, ScriptPos *leading_pos, float *leading_certainty, int *num_rebuilt_trailing, ScriptPos *trailing_pos, float *trailing_certainty, float *avg_certainty, float *unlikely_threshold); WERD_RES *TrySuperscriptSplits(int num_chopped_leading, float leading_certainty, ScriptPos leading_pos, int num_chopped_trailing, float trailing_certainty, ScriptPos trailing_pos, WERD_RES *word, bool *is_good, int *retry_leading, int *retry_trailing); bool BelievableSuperscript(bool debug, const WERD_RES &word, float certainty_threshold, int *left_ok, int *right_ok) const; //// output.h ////////////////////////////////////////////////////////// void output_pass(PAGE_RES_IT &page_res_it, const TBOX *target_word_box); void write_results(PAGE_RES_IT &page_res_it, // full info char newline_type, // type of newline BOOL8 force_eol // override tilde crunch? ); void set_unlv_suspects(WERD_RES *word); UNICHAR_ID get_rep_char(WERD_RES *word); // what char is repeated? BOOL8 acceptable_number_string(const char *s, const char *lengths); inT16 count_alphanums(const WERD_CHOICE &word); inT16 count_alphas(const WERD_CHOICE &word); //// tessedit.h //////////////////////////////////////////////////////// void read_config_file(const char *filename, SetParamConstraint constraint); // Initialize for potentially a set of languages defined by the language // string and recursively any additional languages required by any language // traineddata file (via tessedit_load_sublangs in its config) that is loaded. // See init_tesseract_internal for args. int init_tesseract(const char* arg0, const char* textbase, const char* language, OcrEngineMode oem, char** configs, int configs_size, const GenericVector* vars_vec, const GenericVector* vars_values, bool set_only_init_params, TessdataManager* mgr); int init_tesseract(const char *datapath, const char *language, OcrEngineMode oem) { TessdataManager mgr; return init_tesseract(datapath, NULL, language, oem, NULL, 0, NULL, NULL, false, &mgr); } // Common initialization for a single language. // arg0 is the datapath for the tessdata directory, which could be the // path of the tessdata directory with no trailing /, or (if tessdata // lives in the same directory as the executable, the path of the executable, // hence the name arg0. // textbase is an optional output file basename (used only for training) // language is the language code to load. // oem controls which engine(s) will operate on the image // configs (argv) is an array of config filenames to load variables from. // May be NULL. // configs_size (argc) is the number of elements in configs. // vars_vec is an optional vector of variables to set. // vars_values is an optional corresponding vector of values for the variables // in vars_vec. // If set_only_init_params is true, then only the initialization variables // will be set. int init_tesseract_internal(const char* arg0, const char* textbase, const char* language, OcrEngineMode oem, char** configs, int configs_size, const GenericVector* vars_vec, const GenericVector* vars_values, bool set_only_init_params, TessdataManager* mgr); // Set the universal_id member of each font to be unique among all // instances of the same font loaded. void SetupUniversalFontIds(); int init_tesseract_lm(const char* arg0, const char* textbase, const char* language, TessdataManager* mgr); void recognize_page(STRING& image_name); void end_tesseract(); bool init_tesseract_lang_data(const char* arg0, const char* textbase, const char* language, OcrEngineMode oem, char** configs, int configs_size, const GenericVector* vars_vec, const GenericVector* vars_values, bool set_only_init_params, TessdataManager* mgr); void ParseLanguageString(const char* lang_str, GenericVector* to_load, GenericVector* not_to_load); //// pgedit.h ////////////////////////////////////////////////////////// SVMenuNode *build_menu_new(); #ifndef GRAPHICS_DISABLED void pgeditor_main(int width, int height, PAGE_RES* page_res); #endif // GRAPHICS_DISABLED void process_image_event( // action in image win const SVEvent &event); BOOL8 process_cmd_win_event( // UI command semantics inT32 cmd_event, // which menu item? char *new_value // any prompt data ); void debug_word(PAGE_RES* page_res, const TBOX &selection_box); void do_re_display( BOOL8 (tesseract::Tesseract::*word_painter)(PAGE_RES_IT* pr_it)); BOOL8 word_display(PAGE_RES_IT* pr_it); BOOL8 word_bln_display(PAGE_RES_IT* pr_it); BOOL8 word_blank_and_set_display(PAGE_RES_IT* pr_its); BOOL8 word_set_display(PAGE_RES_IT* pr_it); // #ifndef GRAPHICS_DISABLED BOOL8 word_dumper(PAGE_RES_IT* pr_it); // #endif // GRAPHICS_DISABLED void blob_feature_display(PAGE_RES* page_res, const TBOX& selection_box); //// reject.h ////////////////////////////////////////////////////////// // make rej map for word void make_reject_map(WERD_RES *word, ROW *row, inT16 pass); BOOL8 one_ell_conflict(WERD_RES *word_res, BOOL8 update_map); inT16 first_alphanum_index(const char *word, const char *word_lengths); inT16 first_alphanum_offset(const char *word, const char *word_lengths); inT16 alpha_count(const char *word, const char *word_lengths); BOOL8 word_contains_non_1_digit(const char *word, const char *word_lengths); void dont_allow_1Il(WERD_RES *word); inT16 count_alphanums( //how many alphanums WERD_RES *word); void flip_0O(WERD_RES *word); BOOL8 non_0_digit(const UNICHARSET& ch_set, UNICHAR_ID unichar_id); BOOL8 non_O_upper(const UNICHARSET& ch_set, UNICHAR_ID unichar_id); BOOL8 repeated_nonalphanum_wd(WERD_RES *word, ROW *row); void nn_match_word( //Match a word WERD_RES *word, ROW *row); void nn_recover_rejects(WERD_RES *word, ROW *row); void set_done( //set done flag WERD_RES *word, inT16 pass); inT16 safe_dict_word(const WERD_RES *werd_res); // is best_choice in dict? void flip_hyphens(WERD_RES *word); void reject_I_1_L(WERD_RES *word); void reject_edge_blobs(WERD_RES *word); void reject_mostly_rejects(WERD_RES *word); //// adaptions.h /////////////////////////////////////////////////////// BOOL8 word_adaptable( //should we adapt? WERD_RES *word, uinT16 mode); //// tfacepp.cpp /////////////////////////////////////////////////////// void recog_word_recursive(WERD_RES* word); void recog_word(WERD_RES *word); void split_and_recog_word(WERD_RES* word); void split_word(WERD_RES *word, int split_pt, WERD_RES **right_piece, BlamerBundle **orig_blamer_bundle) const; void join_words(WERD_RES *word, WERD_RES *word2, BlamerBundle *orig_bb) const; //// fixspace.cpp /////////////////////////////////////////////////////// BOOL8 digit_or_numeric_punct(WERD_RES *word, int char_position); inT16 eval_word_spacing(WERD_RES_LIST &word_res_list); void match_current_words(WERD_RES_LIST &words, ROW *row, BLOCK* block); inT16 fp_eval_word_spacing(WERD_RES_LIST &word_res_list); void fix_noisy_space_list(WERD_RES_LIST &best_perm, ROW *row, BLOCK* block); void fix_fuzzy_space_list(WERD_RES_LIST &best_perm, ROW *row, BLOCK* block); void fix_sp_fp_word(WERD_RES_IT &word_res_it, ROW *row, BLOCK* block); void fix_fuzzy_spaces( //find fuzzy words ETEXT_DESC *monitor, //progress monitor inT32 word_count, //count of words in doc PAGE_RES *page_res); void dump_words(WERD_RES_LIST &perm, inT16 score, inT16 mode, BOOL8 improved); BOOL8 fixspace_thinks_word_done(WERD_RES *word); inT16 worst_noise_blob(WERD_RES *word_res, float *worst_noise_score); float blob_noise_score(TBLOB *blob); void break_noisiest_blob_word(WERD_RES_LIST &words); //// docqual.cpp //////////////////////////////////////////////////////// GARBAGE_LEVEL garbage_word(WERD_RES *word, BOOL8 ok_dict_word); BOOL8 potential_word_crunch(WERD_RES *word, GARBAGE_LEVEL garbage_level, BOOL8 ok_dict_word); void tilde_crunch(PAGE_RES_IT &page_res_it); void unrej_good_quality_words( //unreject potential PAGE_RES_IT &page_res_it); void doc_and_block_rejection( //reject big chunks PAGE_RES_IT &page_res_it, BOOL8 good_quality_doc); void quality_based_rejection(PAGE_RES_IT &page_res_it, BOOL8 good_quality_doc); void convert_bad_unlv_chs(WERD_RES *word_res); void tilde_delete(PAGE_RES_IT &page_res_it); inT16 word_blob_quality(WERD_RES *word, ROW *row); void word_char_quality(WERD_RES *word, ROW *row, inT16 *match_count, inT16 *accepted_match_count); void unrej_good_chs(WERD_RES *word, ROW *row); inT16 count_outline_errs(char c, inT16 outline_count); inT16 word_outline_errs(WERD_RES *word); BOOL8 terrible_word_crunch(WERD_RES *word, GARBAGE_LEVEL garbage_level); CRUNCH_MODE word_deletable(WERD_RES *word, inT16 &delete_mode); inT16 failure_count(WERD_RES *word); BOOL8 noise_outlines(TWERD *word); //// pagewalk.cpp /////////////////////////////////////////////////////// void process_selected_words ( PAGE_RES* page_res, // blocks to check //function to call TBOX & selection_box, BOOL8 (tesseract::Tesseract::*word_processor)(PAGE_RES_IT* pr_it)); //// tessbox.cpp /////////////////////////////////////////////////////// void tess_add_doc_word( //test acceptability WERD_CHOICE *word_choice //after context ); void tess_segment_pass_n(int pass_n, WERD_RES *word); bool tess_acceptable_word(WERD_RES *word); //// applybox.cpp ////////////////////////////////////////////////////// // Applies the box file based on the image name fname, and resegments // the words in the block_list (page), with: // blob-mode: one blob per line in the box file, words as input. // word/line-mode: one blob per space-delimited unit after the #, and one word // per line in the box file. (See comment above for box file format.) // If find_segmentation is true, (word/line mode) then the classifier is used // to re-segment words/lines to match the space-delimited truth string for // each box. In this case, the input box may be for a word or even a whole // text line, and the output words will contain multiple blobs corresponding // to the space-delimited input string. // With find_segmentation false, no classifier is needed, but the chopper // can still be used to correctly segment touching characters with the help // of the input boxes. // In the returned PAGE_RES, the WERD_RES are setup as they would be returned // from normal classification, ie. with a word, chopped_word, rebuild_word, // seam_array, denorm, box_word, and best_state, but NO best_choice or // raw_choice, as they would require a UNICHARSET, which we aim to avoid. // Instead, the correct_text member of WERD_RES is set, and this may be later // converted to a best_choice using CorrectClassifyWords. CorrectClassifyWords // is not required before calling ApplyBoxTraining. PAGE_RES* ApplyBoxes(const STRING& fname, bool find_segmentation, BLOCK_LIST *block_list); // Any row xheight that is significantly different from the median is set // to the median. void PreenXHeights(BLOCK_LIST *block_list); // Builds a PAGE_RES from the block_list in the way required for ApplyBoxes: // All fuzzy spaces are removed, and all the words are maximally chopped. PAGE_RES* SetupApplyBoxes(const GenericVector& boxes, BLOCK_LIST *block_list); // Tests the chopper by exhaustively running chop_one_blob. // The word_res will contain filled chopped_word, seam_array, denorm, // box_word and best_state for the maximally chopped word. void MaximallyChopWord(const GenericVector& boxes, BLOCK* block, ROW* row, WERD_RES* word_res); // Gather consecutive blobs that match the given box into the best_state // and corresponding correct_text. // Fights over which box owns which blobs are settled by pre-chopping and // applying the blobs to box or next_box with the least non-overlap. // Returns false if the box was in error, which can only be caused by // failing to find an appropriate blob for a box. // This means that occasionally, blobs may be incorrectly segmented if the // chopper fails to find a suitable chop point. bool ResegmentCharBox(PAGE_RES* page_res, const TBOX *prev_box, const TBOX& box, const TBOX& next_box, const char* correct_text); // Consume all source blobs that strongly overlap the given box, // putting them into a new word, with the correct_text label. // Fights over which box owns which blobs are settled by // applying the blobs to box or next_box with the least non-overlap. // Returns false if the box was in error, which can only be caused by // failing to find an overlapping blob for a box. bool ResegmentWordBox(BLOCK_LIST *block_list, const TBOX& box, const TBOX& next_box, const char* correct_text); // Resegments the words by running the classifier in an attempt to find the // correct segmentation that produces the required string. void ReSegmentByClassification(PAGE_RES* page_res); // Converts the space-delimited string of utf8 text to a vector of UNICHAR_ID. // Returns false if an invalid UNICHAR_ID is encountered. bool ConvertStringToUnichars(const char* utf8, GenericVector* class_ids); // Resegments the word to achieve the target_text from the classifier. // Returns false if the re-segmentation fails. // Uses brute-force combination of up to kMaxGroupSize adjacent blobs, and // applies a full search on the classifier results to find the best classified // segmentation. As a compromise to obtain better recall, 1-1 ambigiguity // substitutions ARE used. bool FindSegmentation(const GenericVector& target_text, WERD_RES* word_res); // Recursive helper to find a match to the target_text (from text_index // position) in the choices (from choices_pos position). // Choices is an array of GenericVectors, of length choices_length, with each // element representing a starting position in the word, and the // GenericVector holding classification results for a sequence of consecutive // blobs, with index 0 being a single blob, index 1 being 2 blobs etc. void SearchForText(const GenericVector* choices, int choices_pos, int choices_length, const GenericVector& target_text, int text_index, float rating, GenericVector* segmentation, float* best_rating, GenericVector* best_segmentation); // Counts up the labelled words and the blobs within. // Deletes all unused or emptied words, counting the unused ones. // Resets W_BOL and W_EOL flags correctly. // Builds the rebuild_word and rebuilds the box_word. void TidyUp(PAGE_RES* page_res); // Logs a bad box by line in the box file and box coords. void ReportFailedBox(int boxfile_lineno, TBOX box, const char *box_ch, const char *err_msg); // Creates a fake best_choice entry in each WERD_RES with the correct text. void CorrectClassifyWords(PAGE_RES* page_res); // Call LearnWord to extract features for labelled blobs within each word. // Features are stored in an internal buffer. void ApplyBoxTraining(const STRING& fontname, PAGE_RES* page_res); //// fixxht.cpp /////////////////////////////////////////////////////// // Returns the number of misfit blob tops in this word. int CountMisfitTops(WERD_RES *word_res); // Returns a new x-height in pixels (original image coords) that is // maximally compatible with the result in word_res. // Returns 0.0f if no x-height is found that is better than the current // estimate. float ComputeCompatibleXheight(WERD_RES *word_res, float* baseline_shift); //// Data members /////////////////////////////////////////////////////// // TODO(ocr-team): Find and remove obsolete parameters. BOOL_VAR_H(tessedit_resegment_from_boxes, false, "Take segmentation and labeling from box file"); BOOL_VAR_H(tessedit_resegment_from_line_boxes, false, "Conversion of word/line box file to char box file"); BOOL_VAR_H(tessedit_train_from_boxes, false, "Generate training data from boxed chars"); BOOL_VAR_H(tessedit_make_boxes_from_boxes, false, "Generate more boxes from boxed chars"); BOOL_VAR_H(tessedit_train_line_recognizer, false, "Break input into lines and remap boxes if present"); BOOL_VAR_H(tessedit_dump_pageseg_images, false, "Dump intermediate images made during page segmentation"); INT_VAR_H(tessedit_pageseg_mode, PSM_SINGLE_BLOCK, "Page seg mode: 0=osd only, 1=auto+osd, 2=auto, 3=col, 4=block," " 5=line, 6=word, 7=char" " (Values from PageSegMode enum in publictypes.h)"); INT_VAR_H(tessedit_ocr_engine_mode, tesseract::OEM_DEFAULT, "Which OCR engine(s) to run (Tesseract, LSTM, both). Defaults" " to loading and running the most accurate available."); STRING_VAR_H(tessedit_char_blacklist, "", "Blacklist of chars not to recognize"); STRING_VAR_H(tessedit_char_whitelist, "", "Whitelist of chars to recognize"); STRING_VAR_H(tessedit_char_unblacklist, "", "List of chars to override tessedit_char_blacklist"); BOOL_VAR_H(tessedit_ambigs_training, false, "Perform training for ambiguities"); INT_VAR_H(pageseg_devanagari_split_strategy, tesseract::ShiroRekhaSplitter::NO_SPLIT, "Whether to use the top-line splitting process for Devanagari " "documents while performing page-segmentation."); INT_VAR_H(ocr_devanagari_split_strategy, tesseract::ShiroRekhaSplitter::NO_SPLIT, "Whether to use the top-line splitting process for Devanagari " "documents while performing ocr."); STRING_VAR_H(tessedit_write_params_to_file, "", "Write all parameters to the given file."); BOOL_VAR_H(tessedit_adaption_debug, false, "Generate and print debug information for adaption"); INT_VAR_H(bidi_debug, 0, "Debug level for BiDi"); INT_VAR_H(applybox_debug, 1, "Debug level"); INT_VAR_H(applybox_page, 0, "Page number to apply boxes from"); STRING_VAR_H(applybox_exposure_pattern, ".exp", "Exposure value follows this pattern in the image" " filename. The name of the image files are expected" " to be in the form [lang].[fontname].exp[num].tif"); BOOL_VAR_H(applybox_learn_chars_and_char_frags_mode, false, "Learn both character fragments (as is done in the" " special low exposure mode) as well as unfragmented" " characters."); BOOL_VAR_H(applybox_learn_ngrams_mode, false, "Each bounding box is assumed to contain ngrams. Only" " learn the ngrams whose outlines overlap horizontally."); BOOL_VAR_H(tessedit_display_outwords, false, "Draw output words"); BOOL_VAR_H(tessedit_dump_choices, false, "Dump char choices"); BOOL_VAR_H(tessedit_timing_debug, false, "Print timing stats"); BOOL_VAR_H(tessedit_fix_fuzzy_spaces, true, "Try to improve fuzzy spaces"); BOOL_VAR_H(tessedit_unrej_any_wd, false, "Don't bother with word plausibility"); BOOL_VAR_H(tessedit_fix_hyphens, true, "Crunch double hyphens?"); BOOL_VAR_H(tessedit_redo_xheight, true, "Check/Correct x-height"); BOOL_VAR_H(tessedit_enable_doc_dict, true, "Add words to the document dictionary"); BOOL_VAR_H(tessedit_debug_fonts, false, "Output font info per char"); BOOL_VAR_H(tessedit_debug_block_rejection, false, "Block and Row stats"); BOOL_VAR_H(tessedit_enable_bigram_correction, true, "Enable correction based on the word bigram dictionary."); BOOL_VAR_H(tessedit_enable_dict_correction, false, "Enable single word correction based on the dictionary."); INT_VAR_H(tessedit_bigram_debug, 0, "Amount of debug output for bigram " "correction."); BOOL_VAR_H(enable_noise_removal, true, "Remove and conditionally reassign small outlines when they" " confuse layout analysis, determining diacritics vs noise"); INT_VAR_H(debug_noise_removal, 0, "Debug reassignment of small outlines"); // Worst (min) certainty, for which a diacritic is allowed to make the base // character worse and still be included. double_VAR_H(noise_cert_basechar, -8.0, "Hingepoint for base char certainty"); // Worst (min) certainty, for which a non-overlapping diacritic is allowed to // make the base character worse and still be included. double_VAR_H(noise_cert_disjoint, -2.5, "Hingepoint for disjoint certainty"); // Worst (min) certainty, for which a diacritic is allowed to make a new // stand-alone blob. double_VAR_H(noise_cert_punc, -2.5, "Threshold for new punc char certainty"); // Factor of certainty margin for adding diacritics to not count as worse. double_VAR_H(noise_cert_factor, 0.375, "Scaling on certainty diff from Hingepoint"); INT_VAR_H(noise_maxperblob, 8, "Max diacritics to apply to a blob"); INT_VAR_H(noise_maxperword, 16, "Max diacritics to apply to a word"); INT_VAR_H(debug_x_ht_level, 0, "Reestimate debug"); BOOL_VAR_H(debug_acceptable_wds, false, "Dump word pass/fail chk"); STRING_VAR_H(chs_leading_punct, "('`\"", "Leading punctuation"); STRING_VAR_H(chs_trailing_punct1, ").,;:?!", "1st Trailing punctuation"); STRING_VAR_H(chs_trailing_punct2, ")'`\"", "2nd Trailing punctuation"); double_VAR_H(quality_rej_pc, 0.08, "good_quality_doc lte rejection limit"); double_VAR_H(quality_blob_pc, 0.0, "good_quality_doc gte good blobs limit"); double_VAR_H(quality_outline_pc, 1.0, "good_quality_doc lte outline error limit"); double_VAR_H(quality_char_pc, 0.95, "good_quality_doc gte good char limit"); INT_VAR_H(quality_min_initial_alphas_reqd, 2, "alphas in a good word"); INT_VAR_H(tessedit_tess_adaption_mode, 0x27, "Adaptation decision algorithm for tess"); BOOL_VAR_H(tessedit_minimal_rej_pass1, false, "Do minimal rejection on pass 1 output"); BOOL_VAR_H(tessedit_test_adaption, false, "Test adaption criteria"); BOOL_VAR_H(tessedit_matcher_log, false, "Log matcher activity"); INT_VAR_H(tessedit_test_adaption_mode, 3, "Adaptation decision algorithm for tess"); BOOL_VAR_H(test_pt, false, "Test for point"); double_VAR_H(test_pt_x, 99999.99, "xcoord"); double_VAR_H(test_pt_y, 99999.99, "ycoord"); INT_VAR_H(multilang_debug_level, 0, "Print multilang debug info."); INT_VAR_H(paragraph_debug_level, 0, "Print paragraph debug info."); BOOL_VAR_H(paragraph_text_based, true, "Run paragraph detection on the post-text-recognition " "(more accurate)"); BOOL_VAR_H(lstm_use_matrix, 1, "Use ratings matrix/beam searct with lstm"); STRING_VAR_H(outlines_odd, "%| ", "Non standard number of outlines"); STRING_VAR_H(outlines_2, "ij!?%\":;", "Non standard number of outlines"); BOOL_VAR_H(docqual_excuse_outline_errs, false, "Allow outline errs in unrejection?"); BOOL_VAR_H(tessedit_good_quality_unrej, true, "Reduce rejection on good docs"); BOOL_VAR_H(tessedit_use_reject_spaces, true, "Reject spaces?"); double_VAR_H(tessedit_reject_doc_percent, 65.00, "%rej allowed before rej whole doc"); double_VAR_H(tessedit_reject_block_percent, 45.00, "%rej allowed before rej whole block"); double_VAR_H(tessedit_reject_row_percent, 40.00, "%rej allowed before rej whole row"); double_VAR_H(tessedit_whole_wd_rej_row_percent, 70.00, "Number of row rejects in whole word rejects" "which prevents whole row rejection"); BOOL_VAR_H(tessedit_preserve_blk_rej_perfect_wds, true, "Only rej partially rejected words in block rejection"); BOOL_VAR_H(tessedit_preserve_row_rej_perfect_wds, true, "Only rej partially rejected words in row rejection"); BOOL_VAR_H(tessedit_dont_blkrej_good_wds, false, "Use word segmentation quality metric"); BOOL_VAR_H(tessedit_dont_rowrej_good_wds, false, "Use word segmentation quality metric"); INT_VAR_H(tessedit_preserve_min_wd_len, 2, "Only preserve wds longer than this"); BOOL_VAR_H(tessedit_row_rej_good_docs, true, "Apply row rejection to good docs"); double_VAR_H(tessedit_good_doc_still_rowrej_wd, 1.1, "rej good doc wd if more than this fraction rejected"); BOOL_VAR_H(tessedit_reject_bad_qual_wds, true, "Reject all bad quality wds"); BOOL_VAR_H(tessedit_debug_doc_rejection, false, "Page stats"); BOOL_VAR_H(tessedit_debug_quality_metrics, false, "Output data to debug file"); BOOL_VAR_H(bland_unrej, false, "unrej potential with no checks"); double_VAR_H(quality_rowrej_pc, 1.1, "good_quality_doc gte good char limit"); BOOL_VAR_H(unlv_tilde_crunching, true, "Mark v.bad words for tilde crunch"); BOOL_VAR_H(hocr_font_info, false, "Add font info to hocr output"); BOOL_VAR_H(crunch_early_merge_tess_fails, true, "Before word crunch?"); BOOL_VAR_H(crunch_early_convert_bad_unlv_chs, false, "Take out ~^ early?"); double_VAR_H(crunch_terrible_rating, 80.0, "crunch rating lt this"); BOOL_VAR_H(crunch_terrible_garbage, true, "As it says"); double_VAR_H(crunch_poor_garbage_cert, -9.0, "crunch garbage cert lt this"); double_VAR_H(crunch_poor_garbage_rate, 60, "crunch garbage rating lt this"); double_VAR_H(crunch_pot_poor_rate, 40, "POTENTIAL crunch rating lt this"); double_VAR_H(crunch_pot_poor_cert, -8.0, "POTENTIAL crunch cert lt this"); BOOL_VAR_H(crunch_pot_garbage, true, "POTENTIAL crunch garbage"); double_VAR_H(crunch_del_rating, 60, "POTENTIAL crunch rating lt this"); double_VAR_H(crunch_del_cert, -10.0, "POTENTIAL crunch cert lt this"); double_VAR_H(crunch_del_min_ht, 0.7, "Del if word ht lt xht x this"); double_VAR_H(crunch_del_max_ht, 3.0, "Del if word ht gt xht x this"); double_VAR_H(crunch_del_min_width, 3.0, "Del if word width lt xht x this"); double_VAR_H(crunch_del_high_word, 1.5, "Del if word gt xht x this above bl"); double_VAR_H(crunch_del_low_word, 0.5, "Del if word gt xht x this below bl"); double_VAR_H(crunch_small_outlines_size, 0.6, "Small if lt xht x this"); INT_VAR_H(crunch_rating_max, 10, "For adj length in rating per ch"); INT_VAR_H(crunch_pot_indicators, 1, "How many potential indicators needed"); BOOL_VAR_H(crunch_leave_ok_strings, true, "Don't touch sensible strings"); BOOL_VAR_H(crunch_accept_ok, true, "Use acceptability in okstring"); BOOL_VAR_H(crunch_leave_accept_strings, false, "Don't pot crunch sensible strings"); BOOL_VAR_H(crunch_include_numerals, false, "Fiddle alpha figures"); INT_VAR_H(crunch_leave_lc_strings, 4, "Don't crunch words with long lower case strings"); INT_VAR_H(crunch_leave_uc_strings, 4, "Don't crunch words with long lower case strings"); INT_VAR_H(crunch_long_repetitions, 3, "Crunch words with long repetitions"); INT_VAR_H(crunch_debug, 0, "As it says"); INT_VAR_H(fixsp_non_noise_limit, 1, "How many non-noise blbs either side?"); double_VAR_H(fixsp_small_outlines_size, 0.28, "Small if lt xht x this"); BOOL_VAR_H(tessedit_prefer_joined_punct, false, "Reward punctation joins"); INT_VAR_H(fixsp_done_mode, 1, "What constitues done for spacing"); INT_VAR_H(debug_fix_space_level, 0, "Contextual fixspace debug"); STRING_VAR_H(numeric_punctuation, ".,", "Punct. chs expected WITHIN numbers"); INT_VAR_H(x_ht_acceptance_tolerance, 8, "Max allowed deviation of blob top outside of font data"); INT_VAR_H(x_ht_min_change, 8, "Min change in xht before actually trying it"); INT_VAR_H(superscript_debug, 0, "Debug level for sub & superscript fixer"); double_VAR_H(superscript_worse_certainty, 2.0, "How many times worse " "certainty does a superscript position glyph need to be for us " "to try classifying it as a char with a different baseline?"); double_VAR_H(superscript_bettered_certainty, 0.97, "What reduction in " "badness do we think sufficient to choose a superscript over " "what we'd thought. For example, a value of 0.6 means we want " "to reduce badness of certainty by 40%"); double_VAR_H(superscript_scaledown_ratio, 0.4, "A superscript scaled down more than this is unbelievably " "small. For example, 0.3 means we expect the font size to " "be no smaller than 30% of the text line font size."); double_VAR_H(subscript_max_y_top, 0.5, "Maximum top of a character measured as a multiple of x-height " "above the baseline for us to reconsider whether it's a " "subscript."); double_VAR_H(superscript_min_y_bottom, 0.3, "Minimum bottom of a character measured as a multiple of " "x-height above the baseline for us to reconsider whether it's " "a superscript."); BOOL_VAR_H(tessedit_write_block_separators, false, "Write block separators in output"); BOOL_VAR_H(tessedit_write_rep_codes, false, "Write repetition char code"); BOOL_VAR_H(tessedit_write_unlv, false, "Write .unlv output file"); BOOL_VAR_H(tessedit_create_txt, false, "Write .txt output file"); BOOL_VAR_H(tessedit_create_hocr, false, "Write .html hOCR output file"); BOOL_VAR_H(tessedit_create_tsv, false, "Write .tsv output file"); BOOL_VAR_H(tessedit_create_pdf, false, "Write .pdf output file"); BOOL_VAR_H(textonly_pdf, false, "Create PDF with only one invisible text layer"); STRING_VAR_H(unrecognised_char, "|", "Output char for unidentified blobs"); INT_VAR_H(suspect_level, 99, "Suspect marker level"); INT_VAR_H(suspect_space_level, 100, "Min suspect level for rejecting spaces"); INT_VAR_H(suspect_short_words, 2, "Don't Suspect dict wds longer than this"); BOOL_VAR_H(suspect_constrain_1Il, false, "UNLV keep 1Il chars rejected"); double_VAR_H(suspect_rating_per_ch, 999.9, "Don't touch bad rating limit"); double_VAR_H(suspect_accept_rating, -999.9, "Accept good rating limit"); BOOL_VAR_H(tessedit_minimal_rejection, false, "Only reject tess failures"); BOOL_VAR_H(tessedit_zero_rejection, false, "Don't reject ANYTHING"); BOOL_VAR_H(tessedit_word_for_word, false, "Make output have exactly one word per WERD"); BOOL_VAR_H(tessedit_zero_kelvin_rejection, false, "Don't reject ANYTHING AT ALL"); BOOL_VAR_H(tessedit_consistent_reps, true, "Force all rep chars the same"); INT_VAR_H(tessedit_reject_mode, 0, "Rejection algorithm"); BOOL_VAR_H(tessedit_rejection_debug, false, "Adaption debug"); BOOL_VAR_H(tessedit_flip_0O, true, "Contextual 0O O0 flips"); double_VAR_H(tessedit_lower_flip_hyphen, 1.5, "Aspect ratio dot/hyphen test"); double_VAR_H(tessedit_upper_flip_hyphen, 1.8, "Aspect ratio dot/hyphen test"); BOOL_VAR_H(rej_trust_doc_dawg, false, "Use DOC dawg in 11l conf. detector"); BOOL_VAR_H(rej_1Il_use_dict_word, false, "Use dictword test"); BOOL_VAR_H(rej_1Il_trust_permuter_type, true, "Don't double check"); BOOL_VAR_H(rej_use_tess_accepted, true, "Individual rejection control"); BOOL_VAR_H(rej_use_tess_blanks, true, "Individual rejection control"); BOOL_VAR_H(rej_use_good_perm, true, "Individual rejection control"); BOOL_VAR_H(rej_use_sensible_wd, false, "Extend permuter check"); BOOL_VAR_H(rej_alphas_in_number_perm, false, "Extend permuter check"); double_VAR_H(rej_whole_of_mostly_reject_word_fract, 0.85, "if >this fract"); INT_VAR_H(tessedit_image_border, 2, "Rej blbs near image edge limit"); STRING_VAR_H(ok_repeated_ch_non_alphanum_wds, "-?*\075", "Allow NN to unrej"); STRING_VAR_H(conflict_set_I_l_1, "Il1[]", "Il1 conflict set"); INT_VAR_H(min_sane_x_ht_pixels, 8, "Reject any x-ht lt or eq than this"); BOOL_VAR_H(tessedit_create_boxfile, false, "Output text with boxes"); INT_VAR_H(tessedit_page_number, -1, "-1 -> All pages, else specific page to process"); BOOL_VAR_H(tessedit_write_images, false, "Capture the image from the IPE"); BOOL_VAR_H(interactive_display_mode, false, "Run interactively?"); STRING_VAR_H(file_type, ".tif", "Filename extension"); BOOL_VAR_H(tessedit_override_permuter, true, "According to dict_word"); STRING_VAR_H(tessedit_load_sublangs, "", "List of languages to load with this one"); BOOL_VAR_H(tessedit_use_primary_params_model, false, "In multilingual mode use params model of the primary language"); // Min acceptable orientation margin (difference in scores between top and 2nd // choice in OSResults::orientations) to believe the page orientation. double_VAR_H(min_orientation_margin, 7.0, "Min acceptable orientation margin"); BOOL_VAR_H(textord_tabfind_show_vlines, false, "Debug line finding"); BOOL_VAR_H(textord_use_cjk_fp_model, FALSE, "Use CJK fixed pitch model"); BOOL_VAR_H(poly_allow_detailed_fx, false, "Allow feature extractors to see the original outline"); BOOL_VAR_H(tessedit_init_config_only, false, "Only initialize with the config file. Useful if the instance is " "not going to be used for OCR but say only for layout analysis."); BOOL_VAR_H(textord_equation_detect, false, "Turn on equation detector"); BOOL_VAR_H(textord_tabfind_vertical_text, true, "Enable vertical detection"); BOOL_VAR_H(textord_tabfind_force_vertical_text, false, "Force using vertical text page mode"); double_VAR_H(textord_tabfind_vertical_text_ratio, 0.5, "Fraction of textlines deemed vertical to use vertical page " "mode"); double_VAR_H(textord_tabfind_aligned_gap_fraction, 0.75, "Fraction of height used as a minimum gap for aligned blobs."); INT_VAR_H(tessedit_parallelize, 0, "Run in parallel where possible"); BOOL_VAR_H(preserve_interword_spaces, false, "Preserve multiple interword spaces"); BOOL_VAR_H(include_page_breaks, false, "Include page separator string in output text after each " "image/page."); STRING_VAR_H(page_separator, "\f", "Page separator (default is form feed control character)"); // The following parameters were deprecated and removed from their original // locations. The parameters are temporarily kept here to give Tesseract // users a chance to updated their [lang].traineddata and config files // without introducing failures during Tesseract initialization. // TODO(ocr-team): remove these parameters from the code once we are // reasonably sure that Tesseract users have updated their data files. // // BEGIN DEPRECATED PARAMETERS BOOL_VAR_H(textord_tabfind_vertical_horizontal_mix, true, "find horizontal lines such as headers in vertical page mode"); INT_VAR_H(tessedit_ok_mode, 5, "Acceptance decision algorithm"); BOOL_VAR_H(load_fixed_length_dawgs, true, "Load fixed length" " dawgs (e.g. for non-space delimited languages)"); INT_VAR_H(segment_debug, 0, "Debug the whole segmentation process"); BOOL_VAR_H(permute_debug, 0, "char permutation debug"); double_VAR_H(bestrate_pruning_factor, 2.0, "Multiplying factor of" " current best rate to prune other hypotheses"); BOOL_VAR_H(permute_script_word, 0, "Turn on word script consistency permuter"); BOOL_VAR_H(segment_segcost_rating, 0, "incorporate segmentation cost in word rating?"); double_VAR_H(segment_reward_script, 0.95, "Score multipler for script consistency within a word. " "Being a 'reward' factor, it should be <= 1. " "Smaller value implies bigger reward."); BOOL_VAR_H(permute_fixed_length_dawg, 0, "Turn on fixed-length phrasebook search permuter"); BOOL_VAR_H(permute_chartype_word, 0, "Turn on character type (property) consistency permuter"); double_VAR_H(segment_reward_chartype, 0.97, "Score multipler for char type consistency within a word. "); double_VAR_H(segment_reward_ngram_best_choice, 0.99, "Score multipler for ngram permuter's best choice" " (only used in the Han script path)."); BOOL_VAR_H(ngram_permuter_activated, false, "Activate character-level n-gram-based permuter"); BOOL_VAR_H(permute_only_top, false, "Run only the top choice permuter"); INT_VAR_H(language_model_fixed_length_choices_depth, 3, "Depth of blob choice lists to explore" " when fixed length dawgs are on"); BOOL_VAR_H(use_new_state_cost, FALSE, "use new state cost heuristics for segmentation state evaluation"); double_VAR_H(heuristic_segcost_rating_base, 1.25, "base factor for adding segmentation cost into word rating." "It's a multiplying factor, the larger the value above 1, " "the bigger the effect of segmentation cost."); double_VAR_H(heuristic_weight_rating, 1, "weight associated with char rating in combined cost of state"); double_VAR_H(heuristic_weight_width, 1000.0, "weight associated with width evidence in combined cost of" " state"); double_VAR_H(heuristic_weight_seamcut, 0, "weight associated with seam cut in combined cost of state"); double_VAR_H(heuristic_max_char_wh_ratio, 2.0, "max char width-to-height ratio allowed in segmentation"); BOOL_VAR_H(enable_new_segsearch, false, "Enable new segmentation search path."); double_VAR_H(segsearch_max_fixed_pitch_char_wh_ratio, 2.0, "Maximum character width-to-height ratio for" "fixed pitch fonts"); // END DEPRECATED PARAMETERS //// ambigsrecog.cpp ///////////////////////////////////////////////////////// FILE *init_recog_training(const STRING &fname); void recog_training_segmented(const STRING &fname, PAGE_RES *page_res, volatile ETEXT_DESC *monitor, FILE *output_file); void ambigs_classify_and_output(const char *label, PAGE_RES_IT* pr_it, FILE *output_file); private: // The filename of a backup config file. If not null, then we currently // have a temporary debug config file loaded, and backup_config_file_ // will be loaded, and set to null when debug is complete. const char* backup_config_file_; // The filename of a config file to read when processing a debug word. STRING word_config_; // Image used for input to layout analysis and tesseract recognition. // May be modified by the ShiroRekhaSplitter to eliminate the top-line. Pix* pix_binary_; // Grey-level input image if the input was not binary, otherwise NULL. Pix* pix_grey_; // Original input image. Color if the input was color. Pix* pix_original_; // Thresholds that were used to generate the thresholded image from grey. Pix* pix_thresholds_; // Debug images. If non-empty, will be written on destruction. DebugPixa pixa_debug_; // Input image resolution after any scaling. The resolution is not well // transmitted by operations on Pix, so we keep an independent record here. int source_resolution_; // The shiro-rekha splitter object which is used to split top-lines in // Devanagari words to provide a better word and grapheme segmentation. ShiroRekhaSplitter splitter_; // Page segmentation/layout Textord textord_; // True if the primary language uses right_to_left reading order. bool right_to_left_; Pix* scaled_color_; int scaled_factor_; FCOORD deskew_; FCOORD reskew_; TesseractStats stats_; // Sub-languages to be tried in addition to this. GenericVector sub_langs_; // Most recently used Tesseract out of this and sub_langs_. The default // language for the next word. Tesseract* most_recently_used_; // The size of the font table, ie max possible font id + 1. int font_table_size_; // Equation detector. Note: this pointer is NOT owned by the class. EquationDetect* equ_detect_; // LSTM recognizer, if available. LSTMRecognizer* lstm_recognizer_; // Output "page" number (actually line number) using TrainLineRecognizer. int train_line_page_num_; }; } // namespace tesseract #endif // TESSERACT_CCMAIN_TESSERACTCLASS_H_