/////////////////////////////////////////////////////////////////////// // File: lstmrecognizer.cpp // Description: Top-level line recognizer class for LSTM-based networks. // Author: Ray Smith // Created: Thu May 02 10:59:06 PST 2013 // // (C) Copyright 2013, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H #include "config_auto.h" #endif #include "lstmrecognizer.h" #include "allheaders.h" #include "callcpp.h" #include "dict.h" #include "genericheap.h" #include "helpers.h" #include "imagedata.h" #include "input.h" #include "lstm.h" #include "normalis.h" #include "pageres.h" #include "ratngs.h" #include "recodebeam.h" #include "scrollview.h" #include "shapetable.h" #include "statistc.h" #include "tprintf.h" namespace tesseract { // Max number of blob choices to return in any given position. const int kMaxChoices = 4; // Default ratio between dict and non-dict words. const double kDictRatio = 2.25; // Default certainty offset to give the dictionary a chance. const double kCertOffset = -0.085; LSTMRecognizer::LSTMRecognizer() : network_(NULL), training_flags_(0), training_iteration_(0), sample_iteration_(0), null_char_(UNICHAR_BROKEN), weight_range_(0.0f), learning_rate_(0.0f), momentum_(0.0f), dict_(NULL), search_(NULL), debug_win_(NULL) {} LSTMRecognizer::~LSTMRecognizer() { delete network_; delete dict_; delete search_; } // Writes to the given file. Returns false in case of error. bool LSTMRecognizer::Serialize(TFile* fp) const { if (!network_->Serialize(fp)) return false; if (!GetUnicharset().save_to_file(fp)) return false; if (!network_str_.Serialize(fp)) return false; if (fp->FWrite(&training_flags_, sizeof(training_flags_), 1) != 1) return false; if (fp->FWrite(&training_iteration_, sizeof(training_iteration_), 1) != 1) return false; if (fp->FWrite(&sample_iteration_, sizeof(sample_iteration_), 1) != 1) return false; if (fp->FWrite(&null_char_, sizeof(null_char_), 1) != 1) return false; if (fp->FWrite(&weight_range_, sizeof(weight_range_), 1) != 1) return false; if (fp->FWrite(&learning_rate_, sizeof(learning_rate_), 1) != 1) return false; if (fp->FWrite(&momentum_, sizeof(momentum_), 1) != 1) return false; if (IsRecoding() && !recoder_.Serialize(fp)) return false; return true; } // Reads from the given file. Returns false in case of error. // If swap is true, assumes a big/little-endian swap is needed. bool LSTMRecognizer::DeSerialize(bool swap, TFile* fp) { delete network_; network_ = Network::CreateFromFile(swap, fp); if (network_ == NULL) return false; if (!ccutil_.unicharset.load_from_file(fp, false)) return false; if (!network_str_.DeSerialize(swap, fp)) return false; if (fp->FRead(&training_flags_, sizeof(training_flags_), 1) != 1) return false; if (fp->FRead(&training_iteration_, sizeof(training_iteration_), 1) != 1) return false; if (fp->FRead(&sample_iteration_, sizeof(sample_iteration_), 1) != 1) return false; if (fp->FRead(&null_char_, sizeof(null_char_), 1) != 1) return false; if (fp->FRead(&weight_range_, sizeof(weight_range_), 1) != 1) return false; if (fp->FRead(&learning_rate_, sizeof(learning_rate_), 1) != 1) return false; if (fp->FRead(&momentum_, sizeof(momentum_), 1) != 1) return false; if (IsRecoding()) { if (!recoder_.DeSerialize(swap, fp)) return false; RecodedCharID code; recoder_.EncodeUnichar(UNICHAR_SPACE, &code); if (code(0) != UNICHAR_SPACE) { tprintf("Space was garbled in recoding!!\n"); return false; } } // TODO(rays) swaps! network_->SetRandomizer(&randomizer_); network_->CacheXScaleFactor(network_->XScaleFactor()); return true; } // Loads the dictionary if possible from the traineddata file. // Prints a warning message, and returns false but otherwise fails silently // and continues to work without it if loading fails. // Note that dictionary load is independent from DeSerialize, but dependent // on the unicharset matching. This enables training to deserialize a model // from checkpoint or restore without having to go back and reload the // dictionary. bool LSTMRecognizer::LoadDictionary(const char* lang, TessdataManager* mgr) { delete dict_; dict_ = new Dict(&ccutil_); dict_->SetupForLoad(Dict::GlobalDawgCache()); dict_->LoadLSTM(lang, mgr); if (dict_->FinishLoad()) return true; // Success. tprintf("Failed to load any lstm-specific dictionaries for lang %s!!\n", lang); delete dict_; dict_ = NULL; return false; } // Recognizes the line image, contained within image_data, returning the // ratings matrix and matching box_word for each WERD_RES in the output. void LSTMRecognizer::RecognizeLine(const ImageData& image_data, bool invert, bool debug, double worst_dict_cert, bool use_alternates, const UNICHARSET* target_unicharset, const TBOX& line_box, float score_ratio, bool one_word, PointerVector* words) { NetworkIO outputs; float label_threshold = use_alternates ? 0.75f : 0.0f; float scale_factor; NetworkIO inputs; if (!RecognizeLine(image_data, invert, debug, false, label_threshold, &scale_factor, &inputs, &outputs)) return; if (IsRecoding()) { if (search_ == NULL) { search_ = new RecodeBeamSearch(recoder_, null_char_, SimpleTextOutput(), dict_); } search_->Decode(outputs, kDictRatio, kCertOffset, worst_dict_cert, NULL); search_->ExtractBestPathAsWords(line_box, scale_factor, debug, &GetUnicharset(), words); } else { GenericVector label_coords; GenericVector labels; LabelsFromOutputs(outputs, label_threshold, &labels, &label_coords); WordsFromOutputs(outputs, labels, label_coords, line_box, debug, use_alternates, one_word, score_ratio, scale_factor, target_unicharset, words); } } // Builds a set of tesseract-compatible WERD_RESs aligned to line_box, // corresponding to the network output in outputs, labels, label_coords. // one_word generates a single word output, that may include spaces inside. // use_alternates generates alternative BLOB_CHOICEs and segmentation paths. // If not NULL, we attempt to translate the output to target_unicharset, but do // not guarantee success, due to mismatches. In that case the output words are // marked with our UNICHARSET, not the caller's. void LSTMRecognizer::WordsFromOutputs( const NetworkIO& outputs, const GenericVector& labels, const GenericVector label_coords, const TBOX& line_box, bool debug, bool use_alternates, bool one_word, float score_ratio, float scale_factor, const UNICHARSET* target_unicharset, PointerVector* words) { // Convert labels to unichar-ids. int word_end = 0; float prev_space_cert = 0.0f; for (int i = 0; i < labels.size(); i = word_end) { word_end = i + 1; if (labels[i] == null_char_ || labels[i] == UNICHAR_SPACE) { continue; } float space_cert = 0.0f; if (one_word) { word_end = labels.size(); } else { // Find the end of the word at the first null_char_ that leads to the // first UNICHAR_SPACE. while (word_end < labels.size() && labels[word_end] != UNICHAR_SPACE) ++word_end; if (word_end < labels.size()) { float rating; outputs.ScoresOverRange(label_coords[word_end], label_coords[word_end] + 1, UNICHAR_SPACE, null_char_, &rating, &space_cert); } while (word_end > i && labels[word_end - 1] == null_char_) --word_end; } ASSERT_HOST(word_end > i); // Create a WERD_RES for the output word. if (debug) tprintf("Creating word from outputs over [%d,%d)\n", i, word_end); WERD_RES* word = WordFromOutput(line_box, outputs, i, word_end, score_ratio, MIN(prev_space_cert, space_cert), debug, use_alternates && !SimpleTextOutput(), target_unicharset, labels, label_coords, scale_factor); if (word == NULL && target_unicharset != NULL) { // Unicharset translation failed - use decoder_ instead, and disable // the segmentation search on output, as it won't understand the encoding. word = WordFromOutput(line_box, outputs, i, word_end, score_ratio, MIN(prev_space_cert, space_cert), debug, false, NULL, labels, label_coords, scale_factor); } prev_space_cert = space_cert; words->push_back(word); } } // Helper computes min and mean best results in the output. void LSTMRecognizer::OutputStats(const NetworkIO& outputs, float* min_output, float* mean_output, float* sd) { const int kOutputScale = MAX_INT8; STATS stats(0, kOutputScale + 1); for (int t = 0; t < outputs.Width(); ++t) { int best_label = outputs.BestLabel(t, NULL); if (best_label != null_char_ || t == 0) { float best_output = outputs.f(t)[best_label]; stats.add(static_cast(kOutputScale * best_output), 1); } } *min_output = static_cast(stats.min_bucket()) / kOutputScale; *mean_output = stats.mean() / kOutputScale; *sd = stats.sd() / kOutputScale; } // Recognizes the image_data, returning the labels, // scores, and corresponding pairs of start, end x-coords in coords. // If label_threshold is positive, uses it for making the labels, otherwise // uses standard ctc. bool LSTMRecognizer::RecognizeLine(const ImageData& image_data, bool invert, bool debug, bool re_invert, float label_threshold, float* scale_factor, NetworkIO* inputs, NetworkIO* outputs) { // Maximum width of image to train on. const int kMaxImageWidth = 2560; // This ensures consistent recognition results. SetRandomSeed(); int min_width = network_->XScaleFactor(); Pix* pix = Input::PrepareLSTMInputs(image_data, network_, min_width, &randomizer_, scale_factor); if (pix == NULL) { tprintf("Line cannot be recognized!!\n"); return false; } if (network_->IsTraining() && pixGetWidth(pix) > kMaxImageWidth) { tprintf("Image too large to learn!! Size = %dx%d\n", pixGetWidth(pix), pixGetHeight(pix)); pixDestroy(&pix); return false; } // Reduction factor from image to coords. *scale_factor = min_width / *scale_factor; inputs->set_int_mode(IsIntMode()); SetRandomSeed(); Input::PreparePixInput(network_->InputShape(), pix, &randomizer_, inputs); network_->Forward(debug, *inputs, NULL, &scratch_space_, outputs); // Check for auto inversion. float pos_min, pos_mean, pos_sd; OutputStats(*outputs, &pos_min, &pos_mean, &pos_sd); if (invert && pos_min < 0.5) { // Run again inverted and see if it is any better. NetworkIO inv_inputs, inv_outputs; inv_inputs.set_int_mode(IsIntMode()); SetRandomSeed(); pixInvert(pix, pix); Input::PreparePixInput(network_->InputShape(), pix, &randomizer_, &inv_inputs); network_->Forward(debug, inv_inputs, NULL, &scratch_space_, &inv_outputs); float inv_min, inv_mean, inv_sd; OutputStats(inv_outputs, &inv_min, &inv_mean, &inv_sd); if (inv_min > pos_min && inv_mean > pos_mean && inv_sd < pos_sd) { // Inverted did better. Use inverted data. if (debug) { tprintf("Inverting image: old min=%g, mean=%g, sd=%g, inv %g,%g,%g\n", pos_min, pos_mean, pos_sd, inv_min, inv_mean, inv_sd); } *outputs = inv_outputs; *inputs = inv_inputs; } else if (re_invert) { // Inverting was not an improvement, so undo and run again, so the // outputs match the best forward result. SetRandomSeed(); network_->Forward(debug, *inputs, NULL, &scratch_space_, outputs); } } pixDestroy(&pix); if (debug) { GenericVector labels, coords; LabelsFromOutputs(*outputs, label_threshold, &labels, &coords); DisplayForward(*inputs, labels, coords, "LSTMForward", &debug_win_); DebugActivationPath(*outputs, labels, coords); } return true; } // Returns a tesseract-compatible WERD_RES from the line recognizer outputs. // line_box should be the bounding box of the line image in the main image, // outputs the output of the network, // [word_start, word_end) the interval over which to convert, // score_ratio for choosing alternate classifier choices, // use_alternates to control generation of alternative segmentations, // labels, label_coords, scale_factor from RecognizeLine above. // If target_unicharset is not NULL, attempts to translate the internal // unichar_ids to the target_unicharset, but falls back to untranslated ids // if the translation should fail. WERD_RES* LSTMRecognizer::WordFromOutput( const TBOX& line_box, const NetworkIO& outputs, int word_start, int word_end, float score_ratio, float space_certainty, bool debug, bool use_alternates, const UNICHARSET* target_unicharset, const GenericVector& labels, const GenericVector& label_coords, float scale_factor) { WERD_RES* word_res = InitializeWord( line_box, word_start, word_end, space_certainty, use_alternates, target_unicharset, labels, label_coords, scale_factor); int max_blob_run = word_res->ratings->bandwidth(); for (int width = 1; width <= max_blob_run; ++width) { int col = 0; for (int i = word_start; i + width <= word_end; ++i) { if (labels[i] != null_char_) { // Starting at i, use width labels, but stop at the next null_char_. // This forms all combinations of blobs between regions of null_char_. int j = i + 1; while (j - i < width && labels[j] != null_char_) ++j; if (j - i == width) { // Make the blob choices. int end_coord = label_coords[j]; if (j < word_end && labels[j] == null_char_) end_coord = label_coords[j + 1]; BLOB_CHOICE_LIST* choices = GetBlobChoices( col, col + width - 1, debug, outputs, target_unicharset, label_coords[i], end_coord, score_ratio); if (choices == NULL) { delete word_res; return NULL; } word_res->ratings->put(col, col + width - 1, choices); } ++col; } } } if (use_alternates) { // Merge adjacent single results over null_char boundaries. int col = 0; for (int i = word_start; i + 2 < word_end; ++i) { if (labels[i] != null_char_ && labels[i + 1] == null_char_ && labels[i + 2] != null_char_ && (i == word_start || labels[i - 1] == null_char_) && (i + 3 == word_end || labels[i + 3] == null_char_)) { int end_coord = label_coords[i + 3]; if (i + 3 < word_end && labels[i + 3] == null_char_) end_coord = label_coords[i + 4]; BLOB_CHOICE_LIST* choices = GetBlobChoices(col, col + 1, debug, outputs, target_unicharset, label_coords[i], end_coord, score_ratio); if (choices == NULL) { delete word_res; return NULL; } word_res->ratings->put(col, col + 1, choices); } if (labels[i] != null_char_) ++col; } } else { word_res->FakeWordFromRatings(TOP_CHOICE_PERM); } return word_res; } // Sets up a word with the ratings matrix and fake blobs with boxes in the // right places. WERD_RES* LSTMRecognizer::InitializeWord(const TBOX& line_box, int word_start, int word_end, float space_certainty, bool use_alternates, const UNICHARSET* target_unicharset, const GenericVector& labels, const GenericVector& label_coords, float scale_factor) { // Make a fake blob for each non-zero label. C_BLOB_LIST blobs; C_BLOB_IT b_it(&blobs); // num_blobs is the length of the diagonal of the ratings matrix. int num_blobs = 0; // max_blob_run is the diagonal width of the ratings matrix int max_blob_run = 0; int blob_run = 0; for (int i = word_start; i < word_end; ++i) { if (IsRecoding() && !recoder_.IsValidFirstCode(labels[i])) continue; if (labels[i] != null_char_) { // Make a fake blob. TBOX box(label_coords[i], 0, label_coords[i + 1], line_box.height()); box.scale(scale_factor); box.move(ICOORD(line_box.left(), line_box.bottom())); box.set_top(line_box.top()); b_it.add_after_then_move(C_BLOB::FakeBlob(box)); ++num_blobs; ++blob_run; } if (labels[i] == null_char_ || i + 1 == word_end) { if (blob_run > max_blob_run) max_blob_run = blob_run; } } if (!use_alternates) max_blob_run = 1; ASSERT_HOST(label_coords.size() >= word_end); // Make a fake word from the blobs. WERD* word = new WERD(&blobs, word_start > 1 ? 1 : 0, NULL); // Make a WERD_RES from the word. WERD_RES* word_res = new WERD_RES(word); word_res->uch_set = target_unicharset != NULL ? target_unicharset : &GetUnicharset(); word_res->combination = true; // Give it ownership of the word. word_res->space_certainty = space_certainty; word_res->ratings = new MATRIX(num_blobs, max_blob_run); return word_res; } // Converts an array of labels to utf-8, whether or not the labels are // augmented with character boundaries. STRING LSTMRecognizer::DecodeLabels(const GenericVector& labels) { STRING result; int end = 1; for (int start = 0; start < labels.size(); start = end) { if (labels[start] == null_char_) { end = start + 1; } else { result += DecodeLabel(labels, start, &end, NULL); } } return result; } // Displays the forward results in a window with the characters and // boundaries as determined by the labels and label_coords. void LSTMRecognizer::DisplayForward(const NetworkIO& inputs, const GenericVector& labels, const GenericVector& label_coords, const char* window_name, ScrollView** window) { #ifndef GRAPHICS_DISABLED // do nothing if there's no graphics Pix* input_pix = inputs.ToPix(); Network::ClearWindow(false, window_name, pixGetWidth(input_pix), pixGetHeight(input_pix), window); int line_height = Network::DisplayImage(input_pix, *window); DisplayLSTMOutput(labels, label_coords, line_height, *window); #endif // GRAPHICS_DISABLED } // Displays the labels and cuts at the corresponding xcoords. // Size of labels should match xcoords. void LSTMRecognizer::DisplayLSTMOutput(const GenericVector& labels, const GenericVector& xcoords, int height, ScrollView* window) { #ifndef GRAPHICS_DISABLED // do nothing if there's no graphics int x_scale = network_->XScaleFactor(); window->TextAttributes("Arial", height / 4, false, false, false); int end = 1; for (int start = 0; start < labels.size(); start = end) { int xpos = xcoords[start] * x_scale; if (labels[start] == null_char_) { end = start + 1; window->Pen(ScrollView::RED); } else { window->Pen(ScrollView::GREEN); const char* str = DecodeLabel(labels, start, &end, NULL); if (*str == '\\') str = "\\\\"; xpos = xcoords[(start + end) / 2] * x_scale; window->Text(xpos, height, str); } window->Line(xpos, 0, xpos, height * 3 / 2); } window->Update(); #endif // GRAPHICS_DISABLED } // Prints debug output detailing the activation path that is implied by the // label_coords. void LSTMRecognizer::DebugActivationPath(const NetworkIO& outputs, const GenericVector& labels, const GenericVector& xcoords) { if (xcoords[0] > 0) DebugActivationRange(outputs, "", null_char_, 0, xcoords[0]); int end = 1; for (int start = 0; start < labels.size(); start = end) { if (labels[start] == null_char_) { end = start + 1; DebugActivationRange(outputs, "", null_char_, xcoords[start], xcoords[end]); continue; } else { int decoded; const char* label = DecodeLabel(labels, start, &end, &decoded); DebugActivationRange(outputs, label, labels[start], xcoords[start], xcoords[start + 1]); for (int i = start + 1; i < end; ++i) { DebugActivationRange(outputs, DecodeSingleLabel(labels[i]), labels[i], xcoords[i], xcoords[i + 1]); } } } } // Prints debug output detailing activations and 2nd choice over a range // of positions. void LSTMRecognizer::DebugActivationRange(const NetworkIO& outputs, const char* label, int best_choice, int x_start, int x_end) { tprintf("%s=%d On [%d, %d), scores=", label, best_choice, x_start, x_end); double max_score = 0.0; double mean_score = 0.0; int width = x_end - x_start; for (int x = x_start; x < x_end; ++x) { const float* line = outputs.f(x); double score = line[best_choice] * 100.0; if (score > max_score) max_score = score; mean_score += score / width; int best_c = 0; double best_score = 0.0; for (int c = 0; c < outputs.NumFeatures(); ++c) { if (c != best_choice && line[c] > best_score) { best_c = c; best_score = line[c]; } } tprintf(" %.3g(%s=%d=%.3g)", score, DecodeSingleLabel(best_c), best_c, best_score * 100.0); } tprintf(", Mean=%g, max=%g\n", mean_score, max_score); } // Helper returns true if the null_char is the winner at t, and it beats the // null_threshold, or the next choice is space, in which case we will use the // null anyway. static bool NullIsBest(const NetworkIO& output, float null_thr, int null_char, int t) { if (output.f(t)[null_char] >= null_thr) return true; if (output.BestLabel(t, null_char, null_char, NULL) != UNICHAR_SPACE) return false; return output.f(t)[null_char] > output.f(t)[UNICHAR_SPACE]; } // Converts the network output to a sequence of labels. Outputs labels, scores // and start xcoords of each char, and each null_char_, with an additional // final xcoord for the end of the output. // The conversion method is determined by internal state. void LSTMRecognizer::LabelsFromOutputs(const NetworkIO& outputs, float null_thr, GenericVector* labels, GenericVector* xcoords) { if (SimpleTextOutput()) { LabelsViaSimpleText(outputs, labels, xcoords); } else if (IsRecoding()) { LabelsViaReEncode(outputs, labels, xcoords); } else if (null_thr <= 0.0) { LabelsViaCTC(outputs, labels, xcoords); } else { LabelsViaThreshold(outputs, null_thr, labels, xcoords); } } // Converts the network output to a sequence of labels, using a threshold // on the null_char_ to determine character boundaries. Outputs labels, scores // and start xcoords of each char, and each null_char_, with an additional // final xcoord for the end of the output. // The label output is the one with the highest score in the interval between // null_chars_. void LSTMRecognizer::LabelsViaThreshold(const NetworkIO& output, float null_thr, GenericVector* labels, GenericVector* xcoords) { labels->truncate(0); xcoords->truncate(0); int width = output.Width(); int t = 0; // Skip any initial non-char. while (t < width && NullIsBest(output, null_thr, null_char_, t)) { ++t; } while (t < width) { ASSERT_HOST(!std::isnan(output.f(t)[null_char_])); int label = output.BestLabel(t, null_char_, null_char_, NULL); int char_start = t++; while (t < width && !NullIsBest(output, null_thr, null_char_, t) && label == output.BestLabel(t, null_char_, null_char_, NULL)) { ++t; } int char_end = t; labels->push_back(label); xcoords->push_back(char_start); // Find the end of the non-char, and compute its score. while (t < width && NullIsBest(output, null_thr, null_char_, t)) { ++t; } if (t > char_end) { labels->push_back(null_char_); xcoords->push_back(char_end); } } xcoords->push_back(width); } // Converts the network output to a sequence of labels, with scores and // start x-coords of the character labels. Retains the null_char_ as the // end x-coord, where already present, otherwise the start of the next // character is the end. // The number of labels, scores, and xcoords is always matched, except that // there is always an additional xcoord for the last end position. void LSTMRecognizer::LabelsViaCTC(const NetworkIO& output, GenericVector* labels, GenericVector* xcoords) { labels->truncate(0); xcoords->truncate(0); int width = output.Width(); int t = 0; while (t < width) { float score = 0.0f; int label = output.BestLabel(t, &score); labels->push_back(label); xcoords->push_back(t); while (++t < width && output.BestLabel(t, NULL) == label) { } } xcoords->push_back(width); } // As LabelsViaCTC except that this function constructs the best path that // contains only legal sequences of subcodes for CJK. void LSTMRecognizer::LabelsViaReEncode(const NetworkIO& output, GenericVector* labels, GenericVector* xcoords) { if (search_ == NULL) { search_ = new RecodeBeamSearch(recoder_, null_char_, SimpleTextOutput(), dict_); } search_->Decode(output, 1.0, 0.0, RecodeBeamSearch::kMinCertainty, NULL); search_->ExtractBestPathAsLabels(labels, xcoords); } // Converts the network output to a sequence of labels, with scores, using // the simple character model (each position is a char, and the null_char_ is // mainly intended for tail padding.) void LSTMRecognizer::LabelsViaSimpleText(const NetworkIO& output, GenericVector* labels, GenericVector* xcoords) { labels->truncate(0); xcoords->truncate(0); int width = output.Width(); for (int t = 0; t < width; ++t) { float score = 0.0f; int label = output.BestLabel(t, &score); if (label != null_char_) { labels->push_back(label); xcoords->push_back(t); } } xcoords->push_back(width); } // Helper returns a BLOB_CHOICE_LIST for the choices in a given x-range. // Handles either LSTM labels or direct unichar-ids. // Score ratio determines the worst ratio between top choice and remainder. // If target_unicharset is not NULL, attempts to translate to the target // unicharset, returning NULL on failure. BLOB_CHOICE_LIST* LSTMRecognizer::GetBlobChoices( int col, int row, bool debug, const NetworkIO& output, const UNICHARSET* target_unicharset, int x_start, int x_end, float score_ratio) { float rating = 0.0f, certainty = 0.0f; int label = output.BestChoiceOverRange(x_start, x_end, UNICHAR_SPACE, null_char_, &rating, &certainty); int unichar_id = label == null_char_ ? UNICHAR_SPACE : label; if (debug) { tprintf("Best choice over range %d,%d=unichar%d=%s r = %g, cert=%g\n", x_start, x_end, unichar_id, DecodeSingleLabel(label), rating, certainty); } BLOB_CHOICE_LIST* choices = new BLOB_CHOICE_LIST; BLOB_CHOICE_IT bc_it(choices); if (!AddBlobChoices(unichar_id, rating, certainty, col, row, target_unicharset, &bc_it)) { delete choices; return NULL; } // Get the other choices. double best_cert = certainty; for (int c = 0; c < output.NumFeatures(); ++c) { if (c == label || c == UNICHAR_SPACE || c == null_char_) continue; // Compute the score over the range. output.ScoresOverRange(x_start, x_end, c, null_char_, &rating, &certainty); int unichar_id = c == null_char_ ? UNICHAR_SPACE : c; if (certainty >= best_cert - score_ratio && !AddBlobChoices(unichar_id, rating, certainty, col, row, target_unicharset, &bc_it)) { delete choices; return NULL; } } choices->sort(&BLOB_CHOICE::SortByRating); if (bc_it.length() > kMaxChoices) { bc_it.move_to_first(); for (int i = 0; i < kMaxChoices; ++i) bc_it.forward(); while (!bc_it.at_first()) { delete bc_it.extract(); bc_it.forward(); } } return choices; } // Adds to the given iterator, the blob choices for the target_unicharset // that correspond to the given LSTM unichar_id. // Returns false if unicharset translation failed. bool LSTMRecognizer::AddBlobChoices(int unichar_id, float rating, float certainty, int col, int row, const UNICHARSET* target_unicharset, BLOB_CHOICE_IT* bc_it) { int target_id = unichar_id; if (target_unicharset != NULL) { const char* utf8 = GetUnicharset().id_to_unichar(unichar_id); if (target_unicharset->contains_unichar(utf8)) { target_id = target_unicharset->unichar_to_id(utf8); } else { return false; } } BLOB_CHOICE* choice = new BLOB_CHOICE(target_id, rating, certainty, -1, 1.0f, static_cast(MAX_INT16), 0.0f, BCC_STATIC_CLASSIFIER); choice->set_matrix_cell(col, row); bc_it->add_after_then_move(choice); return true; } // Returns a string corresponding to the label starting at start. Sets *end // to the next start and if non-null, *decoded to the unichar id. const char* LSTMRecognizer::DecodeLabel(const GenericVector& labels, int start, int* end, int* decoded) { *end = start + 1; if (IsRecoding()) { // Decode labels via recoder_. RecodedCharID code; if (labels[start] == null_char_) { if (decoded != NULL) { code.Set(0, null_char_); *decoded = recoder_.DecodeUnichar(code); } return ""; } int index = start; while (index < labels.size() && code.length() < RecodedCharID::kMaxCodeLen) { code.Set(code.length(), labels[index++]); while (index < labels.size() && labels[index] == null_char_) ++index; int uni_id = recoder_.DecodeUnichar(code); // If the next label isn't a valid first code, then we need to continue // extending even if we have a valid uni_id from this prefix. if (uni_id != INVALID_UNICHAR_ID && (index == labels.size() || code.length() == RecodedCharID::kMaxCodeLen || recoder_.IsValidFirstCode(labels[index]))) { *end = index; if (decoded != NULL) *decoded = uni_id; if (uni_id == UNICHAR_SPACE) return " "; return GetUnicharset().get_normed_unichar(uni_id); } } return ""; } else { if (decoded != NULL) *decoded = labels[start]; if (labels[start] == null_char_) return ""; if (labels[start] == UNICHAR_SPACE) return " "; return GetUnicharset().get_normed_unichar(labels[start]); } } // Returns a string corresponding to a given single label id, falling back to // a default of ".." for part of a multi-label unichar-id. const char* LSTMRecognizer::DecodeSingleLabel(int label) { if (label == null_char_) return ""; if (IsRecoding()) { // Decode label via recoder_. RecodedCharID code; code.Set(0, label); label = recoder_.DecodeUnichar(code); if (label == INVALID_UNICHAR_ID) return ".."; // Part of a bigger code. } if (label == UNICHAR_SPACE) return " "; return GetUnicharset().get_normed_unichar(label); } } // namespace tesseract.