/****************************************************************** * File: control.cpp (Formerly control.c) * Description: Module-independent matcher controller. * Author: Ray Smith * Created: Thu Apr 23 11:09:58 BST 1992 * ReHacked: Tue Sep 22 08:42:49 BST 1992 Phil Cheatle * * (C) Copyright 1992, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H #include "config_auto.h" #endif #include #include #ifdef __UNIX__ #include #include #include #endif #include #include "ocrclass.h" #include "werdit.h" #include "drawfx.h" #include "tessbox.h" #include "tessvars.h" #include "pgedit.h" #include "reject.h" #include "fixspace.h" #include "docqual.h" #include "control.h" #include "output.h" #include "callcpp.h" #include "globals.h" #include "sorthelper.h" #include "tesseractclass.h" #define MIN_FONT_ROW_COUNT 8 #define MAX_XHEIGHT_DIFF 3 const char* const kBackUpConfigFile = "tempconfigdata.config"; // Min believable x-height for any text when refitting as a fraction of // original x-height const double kMinRefitXHeightFraction = 0.5; /** * Make a word from the selected blobs and run Tess on them. * * @param page_res recognise blobs * @param selection_box within this box */ namespace tesseract { void Tesseract::recog_pseudo_word(PAGE_RES* page_res, TBOX &selection_box) { PAGE_RES_IT* it = make_pseudo_word(page_res, selection_box); if (it != NULL) { recog_interactive(it); it->DeleteCurrentWord(); delete it; } } /** * Recognize a single word in interactive mode. * * @param pr_it the page results iterator */ BOOL8 Tesseract::recog_interactive(PAGE_RES_IT* pr_it) { inT16 char_qual; inT16 good_char_qual; WordData word_data(*pr_it); SetupWordPassN(2, &word_data); // LSTM doesn't run on pass2, but we want to run pass2 for tesseract. if (lstm_recognizer_ == NULL) { classify_word_and_language(2, pr_it, &word_data); } else { classify_word_and_language(1, pr_it, &word_data); } if (tessedit_debug_quality_metrics) { WERD_RES* word_res = pr_it->word(); word_char_quality(word_res, pr_it->row()->row, &char_qual, &good_char_qual); tprintf("\n%d chars; word_blob_quality: %d; outline_errs: %d; " "char_quality: %d; good_char_quality: %d\n", word_res->reject_map.length(), word_blob_quality(word_res, pr_it->row()->row), word_outline_errs(word_res), char_qual, good_char_qual); } return TRUE; } // Helper function to check for a target word and handle it appropriately. // Inspired by Jetsoft's requirement to process only single words on pass2 // and beyond. // If word_config is not null: // If the word_box and target_word_box overlap, read the word_config file // else reset to previous config data. // return true. // else // If the word_box and target_word_box overlap or pass <= 1, return true. // Note that this function uses a fixed temporary file for storing the previous // configs, so it is neither thread-safe, nor process-safe, but the assumption // is that it will only be used for one debug window at a time. // // Since this function is used for debugging (and not to change OCR results) // set only debug params from the word config file. bool Tesseract::ProcessTargetWord(const TBOX& word_box, const TBOX& target_word_box, const char* word_config, int pass) { if (word_config != NULL) { if (word_box.major_overlap(target_word_box)) { if (backup_config_file_ == NULL) { backup_config_file_ = kBackUpConfigFile; FILE* config_fp = fopen(backup_config_file_, "wb"); ParamUtils::PrintParams(config_fp, params()); fclose(config_fp); ParamUtils::ReadParamsFile(word_config, SET_PARAM_CONSTRAINT_DEBUG_ONLY, params()); } } else { if (backup_config_file_ != NULL) { ParamUtils::ReadParamsFile(backup_config_file_, SET_PARAM_CONSTRAINT_DEBUG_ONLY, params()); backup_config_file_ = NULL; } } } else if (pass > 1 && !word_box.major_overlap(target_word_box)) { return false; } return true; } /** If tesseract is to be run, sets the words up ready for it. */ void Tesseract::SetupAllWordsPassN(int pass_n, const TBOX* target_word_box, const char* word_config, PAGE_RES* page_res, GenericVector* words) { // Prepare all the words. PAGE_RES_IT page_res_it(page_res); for (page_res_it.restart_page(); page_res_it.word() != NULL; page_res_it.forward()) { if (target_word_box == NULL || ProcessTargetWord(page_res_it.word()->word->bounding_box(), *target_word_box, word_config, 1)) { words->push_back(WordData(page_res_it)); } } // Setup all the words for recognition with polygonal approximation. for (int w = 0; w < words->size(); ++w) { SetupWordPassN(pass_n, &(*words)[w]); if (w > 0) (*words)[w].prev_word = &(*words)[w - 1]; } } // Sets up the single word ready for whichever engine is to be run. void Tesseract::SetupWordPassN(int pass_n, WordData* word) { if (pass_n == 1 || !word->word->done) { if (pass_n == 1) { word->word->SetupForRecognition(unicharset, this, BestPix(), tessedit_ocr_engine_mode, NULL, classify_bln_numeric_mode, textord_use_cjk_fp_model, poly_allow_detailed_fx, word->row, word->block); } else if (pass_n == 2) { // TODO(rays) Should we do this on pass1 too? word->word->caps_height = 0.0; if (word->word->x_height == 0.0f) word->word->x_height = word->row->x_height(); } word->lang_words.truncate(0); for (int s = 0; s <= sub_langs_.size(); ++s) { // The sub_langs_.size() entry is for the master language. Tesseract* lang_t = s < sub_langs_.size() ? sub_langs_[s] : this; WERD_RES* word_res = new WERD_RES; word_res->InitForRetryRecognition(*word->word); word->lang_words.push_back(word_res); // Cube doesn't get setup for pass2. if (pass_n == 1 || lang_t->tessedit_ocr_engine_mode != OEM_CUBE_ONLY) { word_res->SetupForRecognition( lang_t->unicharset, lang_t, BestPix(), lang_t->tessedit_ocr_engine_mode, NULL, lang_t->classify_bln_numeric_mode, lang_t->textord_use_cjk_fp_model, lang_t->poly_allow_detailed_fx, word->row, word->block); } } } } // Runs word recognition on all the words. bool Tesseract::RecogAllWordsPassN(int pass_n, ETEXT_DESC* monitor, PAGE_RES_IT* pr_it, GenericVector* words) { // TODO(rays) Before this loop can be parallelized (it would yield a massive // speed-up) all remaining member globals need to be converted to local/heap // (eg set_pass1 and set_pass2) and an intermediate adaption pass needs to be // added. The results will be significantly different with adaption on, and // deterioration will need investigation. pr_it->restart_page(); for (int w = 0; w < words->size(); ++w) { WordData* word = &(*words)[w]; if (w > 0) word->prev_word = &(*words)[w - 1]; if (monitor != NULL) { monitor->ocr_alive = TRUE; if (pass_n == 1) { monitor->progress = 70 * w / words->size(); if (monitor->progress_callback != NULL) { TBOX box = pr_it->word()->word->bounding_box(); (*monitor->progress_callback)(monitor->progress, box.left(), box.right(), box.top(), box.bottom()); } } else { monitor->progress = 70 + 30 * w / words->size(); if (monitor->progress_callback != NULL) { (*monitor->progress_callback)(monitor->progress, 0, 0, 0, 0); } } if (monitor->deadline_exceeded() || (monitor->cancel != NULL && (*monitor->cancel)(monitor->cancel_this, words->size()))) { // Timeout. Fake out the rest of the words. for (; w < words->size(); ++w) { (*words)[w].word->SetupFake(unicharset); } return false; } } if (word->word->tess_failed) { int s; for (s = 0; s < word->lang_words.size() && word->lang_words[s]->tess_failed; ++s) {} // If all are failed, skip it. Image words are skipped by this test. if (s > word->lang_words.size()) continue; } // Sync pr_it with the wth WordData. while (pr_it->word() != NULL && pr_it->word() != word->word) pr_it->forward(); ASSERT_HOST(pr_it->word() != NULL); bool make_next_word_fuzzy = false; if (!AnyLSTMLang() && ReassignDiacritics(pass_n, pr_it, &make_next_word_fuzzy)) { // Needs to be setup again to see the new outlines in the chopped_word. SetupWordPassN(pass_n, word); } classify_word_and_language(pass_n, pr_it, word); if (tessedit_dump_choices || debug_noise_removal) { tprintf("Pass%d: %s [%s]\n", pass_n, word->word->best_choice->unichar_string().string(), word->word->best_choice->debug_string().string()); } pr_it->forward(); if (make_next_word_fuzzy && pr_it->word() != NULL) { pr_it->MakeCurrentWordFuzzy(); } } return true; } /** * recog_all_words() * * Walk the page_res, recognizing all the words. * If monitor is not null, it is used as a progress monitor/timeout/cancel. * If dopasses is 0, all recognition passes are run, * 1 just pass 1, 2 passes2 and higher. * If target_word_box is not null, special things are done to words that * overlap the target_word_box: * if word_config is not null, the word config file is read for just the * target word(s), otherwise, on pass 2 and beyond ONLY the target words * are processed (Jetsoft modification.) * Returns false if we cancelled prematurely. * * @param page_res page structure * @param monitor progress monitor * @param word_config word_config file * @param target_word_box specifies just to extract a rectangle * @param dopasses 0 - all, 1 just pass 1, 2 passes 2 and higher */ bool Tesseract::recog_all_words(PAGE_RES* page_res, ETEXT_DESC* monitor, const TBOX* target_word_box, const char* word_config, int dopasses) { // PSM_RAW_LINE is a special-case mode in which the layout analysis is // completely ignored and LSTM is run on the raw image. There is no hope // of running normal tesseract in this situation or of integrating output. #ifndef ANDROID_BUILD if (tessedit_ocr_engine_mode == OEM_LSTM_ONLY && tessedit_pageseg_mode == PSM_RAW_LINE) { RecogRawLine(page_res); return true; } #endif PAGE_RES_IT page_res_it(page_res); if (tessedit_minimal_rej_pass1) { tessedit_test_adaption.set_value (TRUE); tessedit_minimal_rejection.set_value (TRUE); } if (dopasses==0 || dopasses==1) { page_res_it.restart_page(); // ****************** Pass 1 ******************* // If the adaptive classifier is full switch to one we prepared earlier, // ie on the previous page. If the current adaptive classifier is non-empty, // prepare a backup starting at this page, in case it fills up. Do all this // independently for each language. if (AdaptiveClassifierIsFull()) { SwitchAdaptiveClassifier(); } else if (!AdaptiveClassifierIsEmpty()) { StartBackupAdaptiveClassifier(); } // Now check the sub-langs as well. for (int i = 0; i < sub_langs_.size(); ++i) { if (sub_langs_[i]->AdaptiveClassifierIsFull()) { sub_langs_[i]->SwitchAdaptiveClassifier(); } else if (!sub_langs_[i]->AdaptiveClassifierIsEmpty()) { sub_langs_[i]->StartBackupAdaptiveClassifier(); } } // Set up all words ready for recognition, so that if parallelism is on // all the input and output classes are ready to run the classifier. GenericVector words; SetupAllWordsPassN(1, target_word_box, word_config, page_res, &words); if (tessedit_parallelize) { PrerecAllWordsPar(words); } stats_.word_count = words.size(); stats_.dict_words = 0; stats_.doc_blob_quality = 0; stats_.doc_outline_errs = 0; stats_.doc_char_quality = 0; stats_.good_char_count = 0; stats_.doc_good_char_quality = 0; most_recently_used_ = this; // Run pass 1 word recognition. if (!RecogAllWordsPassN(1, monitor, &page_res_it, &words)) return false; // Pass 1 post-processing. for (page_res_it.restart_page(); page_res_it.word() != NULL; page_res_it.forward()) { if (page_res_it.word()->word->flag(W_REP_CHAR)) { fix_rep_char(&page_res_it); continue; } // Count dict words. if (page_res_it.word()->best_choice->permuter() == USER_DAWG_PERM) ++(stats_.dict_words); // Update misadaption log (we only need to do it on pass 1, since // adaption only happens on this pass). if (page_res_it.word()->blamer_bundle != NULL && page_res_it.word()->blamer_bundle->misadaption_debug().length() > 0) { page_res->misadaption_log.push_back( page_res_it.word()->blamer_bundle->misadaption_debug()); } } } if (dopasses == 1) return true; // ****************** Pass 2 ******************* if (tessedit_tess_adaption_mode != 0x0 && !tessedit_test_adaption && AnyTessLang()) { page_res_it.restart_page(); GenericVector words; SetupAllWordsPassN(2, target_word_box, word_config, page_res, &words); if (tessedit_parallelize) { PrerecAllWordsPar(words); } most_recently_used_ = this; // Run pass 2 word recognition. if (!RecogAllWordsPassN(2, monitor, &page_res_it, &words)) return false; } // The next passes can only be run if tesseract has been used, as cube // doesn't set all the necessary outputs in WERD_RES. if (AnyTessLang() && !AnyLSTMLang()) { // ****************** Pass 3 ******************* // Fix fuzzy spaces. set_global_loc_code(LOC_FUZZY_SPACE); if (!tessedit_test_adaption && tessedit_fix_fuzzy_spaces && !tessedit_word_for_word && !right_to_left()) fix_fuzzy_spaces(monitor, stats_.word_count, page_res); // ****************** Pass 4 ******************* if (tessedit_enable_dict_correction) dictionary_correction_pass(page_res); if (tessedit_enable_bigram_correction) bigram_correction_pass(page_res); // ****************** Pass 5,6 ******************* rejection_passes(page_res, monitor, target_word_box, word_config); #ifndef NO_CUBE_BUILD // ****************** Pass 7 ******************* // Cube combiner. // If cube is loaded and its combiner is present, run it. if (tessedit_ocr_engine_mode == OEM_TESSERACT_CUBE_COMBINED) { run_cube_combiner(page_res); } #endif // ****************** Pass 8 ******************* font_recognition_pass(page_res); // ****************** Pass 9 ******************* // Check the correctness of the final results. blamer_pass(page_res); script_pos_pass(page_res); } // Write results pass. set_global_loc_code(LOC_WRITE_RESULTS); // This is now redundant, but retained commented so show how to obtain // bounding boxes and style information. // changed by jetsoft // needed for dll to output memory structure if ((dopasses == 0 || dopasses == 2) && (monitor || tessedit_write_unlv)) output_pass(page_res_it, target_word_box); // end jetsoft PageSegMode pageseg_mode = static_cast( static_cast(tessedit_pageseg_mode)); textord_.CleanupSingleRowResult(pageseg_mode, page_res); // Remove empty words, as these mess up the result iterators. for (page_res_it.restart_page(); page_res_it.word() != NULL; page_res_it.forward()) { WERD_RES* word = page_res_it.word(); if (word->best_choice == NULL || word->best_choice->length() == 0) page_res_it.DeleteCurrentWord(); } if (monitor != NULL) { monitor->progress = 100; } return true; } void Tesseract::bigram_correction_pass(PAGE_RES *page_res) { PAGE_RES_IT word_it(page_res); WERD_RES *w_prev = NULL; WERD_RES *w = word_it.word(); while (1) { w_prev = w; while (word_it.forward() != NULL && (!word_it.word() || word_it.word()->part_of_combo)) { // advance word_it, skipping over parts of combos } if (!word_it.word()) break; w = word_it.word(); if (!w || !w_prev || w->uch_set != w_prev->uch_set) { continue; } if (w_prev->word->flag(W_REP_CHAR) || w->word->flag(W_REP_CHAR)) { if (tessedit_bigram_debug) { tprintf("Skipping because one of the words is W_REP_CHAR\n"); } continue; } // Two words sharing the same language model, excellent! GenericVector overrides_word1; GenericVector overrides_word2; STRING orig_w1_str = w_prev->best_choice->unichar_string(); STRING orig_w2_str = w->best_choice->unichar_string(); WERD_CHOICE prev_best(w->uch_set); { int w1start, w1end; w_prev->best_choice->GetNonSuperscriptSpan(&w1start, &w1end); prev_best = w_prev->best_choice->shallow_copy(w1start, w1end); } WERD_CHOICE this_best(w->uch_set); { int w2start, w2end; w->best_choice->GetNonSuperscriptSpan(&w2start, &w2end); this_best = w->best_choice->shallow_copy(w2start, w2end); } if (w->tesseract->getDict().valid_bigram(prev_best, this_best)) { if (tessedit_bigram_debug) { tprintf("Top choice \"%s %s\" verified by bigram model.\n", orig_w1_str.string(), orig_w2_str.string()); } continue; } if (tessedit_bigram_debug > 2) { tprintf("Examining alt choices for \"%s %s\".\n", orig_w1_str.string(), orig_w2_str.string()); } if (tessedit_bigram_debug > 1) { if (!w_prev->best_choices.singleton()) { w_prev->PrintBestChoices(); } if (!w->best_choices.singleton()) { w->PrintBestChoices(); } } float best_rating = 0.0; int best_idx = 0; WERD_CHOICE_IT prev_it(&w_prev->best_choices); for (prev_it.mark_cycle_pt(); !prev_it.cycled_list(); prev_it.forward()) { WERD_CHOICE *p1 = prev_it.data(); WERD_CHOICE strip1(w->uch_set); { int p1start, p1end; p1->GetNonSuperscriptSpan(&p1start, &p1end); strip1 = p1->shallow_copy(p1start, p1end); } WERD_CHOICE_IT w_it(&w->best_choices); for (w_it.mark_cycle_pt(); !w_it.cycled_list(); w_it.forward()) { WERD_CHOICE *p2 = w_it.data(); WERD_CHOICE strip2(w->uch_set); { int p2start, p2end; p2->GetNonSuperscriptSpan(&p2start, &p2end); strip2 = p2->shallow_copy(p2start, p2end); } if (w->tesseract->getDict().valid_bigram(strip1, strip2)) { overrides_word1.push_back(p1); overrides_word2.push_back(p2); if (overrides_word1.size() == 1 || p1->rating() + p2->rating() < best_rating) { best_rating = p1->rating() + p2->rating(); best_idx = overrides_word1.size() - 1; } } } } if (!overrides_word1.empty()) { // Excellent, we have some bigram matches. if (EqualIgnoringCaseAndTerminalPunct(*w_prev->best_choice, *overrides_word1[best_idx]) && EqualIgnoringCaseAndTerminalPunct(*w->best_choice, *overrides_word2[best_idx])) { if (tessedit_bigram_debug > 1) { tprintf("Top choice \"%s %s\" verified (sans case) by bigram " "model.\n", orig_w1_str.string(), orig_w2_str.string()); } continue; } STRING new_w1_str = overrides_word1[best_idx]->unichar_string(); STRING new_w2_str = overrides_word2[best_idx]->unichar_string(); if (new_w1_str != orig_w1_str) { w_prev->ReplaceBestChoice(overrides_word1[best_idx]); } if (new_w2_str != orig_w2_str) { w->ReplaceBestChoice(overrides_word2[best_idx]); } if (tessedit_bigram_debug > 0) { STRING choices_description; int num_bigram_choices = overrides_word1.size() * overrides_word2.size(); if (num_bigram_choices == 1) { choices_description = "This was the unique bigram choice."; } else { if (tessedit_bigram_debug > 1) { STRING bigrams_list; const int kMaxChoicesToPrint = 20; for (int i = 0; i < overrides_word1.size() && i < kMaxChoicesToPrint; i++) { if (i > 0) { bigrams_list += ", "; } WERD_CHOICE *p1 = overrides_word1[i]; WERD_CHOICE *p2 = overrides_word2[i]; bigrams_list += p1->unichar_string() + " " + p2->unichar_string(); if (i == kMaxChoicesToPrint) { bigrams_list += " ..."; } } choices_description = "There were many choices: {"; choices_description += bigrams_list; choices_description += "}"; } else { choices_description.add_str_int("There were ", num_bigram_choices); choices_description += " compatible bigrams."; } } tprintf("Replaced \"%s %s\" with \"%s %s\" with bigram model. %s\n", orig_w1_str.string(), orig_w2_str.string(), new_w1_str.string(), new_w2_str.string(), choices_description.string()); } } } } void Tesseract::rejection_passes(PAGE_RES* page_res, ETEXT_DESC* monitor, const TBOX* target_word_box, const char* word_config) { PAGE_RES_IT page_res_it(page_res); // ****************** Pass 5 ******************* // Gather statistics on rejects. int word_index = 0; while (!tessedit_test_adaption && page_res_it.word() != NULL) { set_global_loc_code(LOC_MM_ADAPT); WERD_RES* word = page_res_it.word(); word_index++; if (monitor != NULL) { monitor->ocr_alive = TRUE; monitor->progress = 95 + 5 * word_index / stats_.word_count; } if (word->rebuild_word == NULL) { // Word was not processed by tesseract. page_res_it.forward(); continue; } check_debug_pt(word, 70); // changed by jetsoft // specific to its needs to extract one word when need if (target_word_box && !ProcessTargetWord(word->word->bounding_box(), *target_word_box, word_config, 4)) { page_res_it.forward(); continue; } // end jetsoft page_res_it.rej_stat_word(); int chars_in_word = word->reject_map.length(); int rejects_in_word = word->reject_map.reject_count(); int blob_quality = word_blob_quality(word, page_res_it.row()->row); stats_.doc_blob_quality += blob_quality; int outline_errs = word_outline_errs(word); stats_.doc_outline_errs += outline_errs; inT16 all_char_quality; inT16 accepted_all_char_quality; word_char_quality(word, page_res_it.row()->row, &all_char_quality, &accepted_all_char_quality); stats_.doc_char_quality += all_char_quality; uinT8 permuter_type = word->best_choice->permuter(); if ((permuter_type == SYSTEM_DAWG_PERM) || (permuter_type == FREQ_DAWG_PERM) || (permuter_type == USER_DAWG_PERM)) { stats_.good_char_count += chars_in_word - rejects_in_word; stats_.doc_good_char_quality += accepted_all_char_quality; } check_debug_pt(word, 80); if (tessedit_reject_bad_qual_wds && (blob_quality == 0) && (outline_errs >= chars_in_word)) word->reject_map.rej_word_bad_quality(); check_debug_pt(word, 90); page_res_it.forward(); } if (tessedit_debug_quality_metrics) { tprintf ("QUALITY: num_chs= %d num_rejs= %d %5.3f blob_qual= %d %5.3f" " outline_errs= %d %5.3f char_qual= %d %5.3f good_ch_qual= %d %5.3f\n", page_res->char_count, page_res->rej_count, page_res->rej_count / static_cast(page_res->char_count), stats_.doc_blob_quality, stats_.doc_blob_quality / static_cast(page_res->char_count), stats_.doc_outline_errs, stats_.doc_outline_errs / static_cast(page_res->char_count), stats_.doc_char_quality, stats_.doc_char_quality / static_cast(page_res->char_count), stats_.doc_good_char_quality, (stats_.good_char_count > 0) ? (stats_.doc_good_char_quality / static_cast(stats_.good_char_count)) : 0.0); } BOOL8 good_quality_doc = ((page_res->rej_count / static_cast(page_res->char_count)) <= quality_rej_pc) && (stats_.doc_blob_quality / static_cast(page_res->char_count) >= quality_blob_pc) && (stats_.doc_outline_errs / static_cast(page_res->char_count) <= quality_outline_pc) && (stats_.doc_char_quality / static_cast(page_res->char_count) >= quality_char_pc); // ****************** Pass 6 ******************* // Do whole document or whole block rejection pass if (!tessedit_test_adaption) { set_global_loc_code(LOC_DOC_BLK_REJ); quality_based_rejection(page_res_it, good_quality_doc); } } void Tesseract::blamer_pass(PAGE_RES* page_res) { if (!wordrec_run_blamer) return; PAGE_RES_IT page_res_it(page_res); for (page_res_it.restart_page(); page_res_it.word() != NULL; page_res_it.forward()) { WERD_RES *word = page_res_it.word(); BlamerBundle::LastChanceBlame(wordrec_debug_blamer, word); page_res->blame_reasons[word->blamer_bundle->incorrect_result_reason()]++; } tprintf("Blame reasons:\n"); for (int bl = 0; bl < IRR_NUM_REASONS; ++bl) { tprintf("%s %d\n", BlamerBundle::IncorrectReasonName( static_cast(bl)), page_res->blame_reasons[bl]); } if (page_res->misadaption_log.length() > 0) { tprintf("Misadaption log:\n"); for (int i = 0; i < page_res->misadaption_log.length(); ++i) { tprintf("%s\n", page_res->misadaption_log[i].string()); } } } // Sets script positions and detects smallcaps on all output words. void Tesseract::script_pos_pass(PAGE_RES* page_res) { PAGE_RES_IT page_res_it(page_res); for (page_res_it.restart_page(); page_res_it.word() != NULL; page_res_it.forward()) { WERD_RES* word = page_res_it.word(); if (word->word->flag(W_REP_CHAR)) { page_res_it.forward(); continue; } float x_height = page_res_it.block()->block->x_height(); float word_x_height = word->x_height; if (word_x_height < word->best_choice->min_x_height() || word_x_height > word->best_choice->max_x_height()) { word_x_height = (word->best_choice->min_x_height() + word->best_choice->max_x_height()) / 2.0f; } // Test for small caps. Word capheight must be close to block xheight, // and word must contain no lower case letters, and at least one upper case. double small_cap_xheight = x_height * kXHeightCapRatio; double small_cap_delta = (x_height - small_cap_xheight) / 2.0; if (word->uch_set->script_has_xheight() && small_cap_xheight - small_cap_delta <= word_x_height && word_x_height <= small_cap_xheight + small_cap_delta) { // Scan for upper/lower. int num_upper = 0; int num_lower = 0; for (int i = 0; i < word->best_choice->length(); ++i) { if (word->uch_set->get_isupper(word->best_choice->unichar_id(i))) ++num_upper; else if (word->uch_set->get_islower(word->best_choice->unichar_id(i))) ++num_lower; } if (num_upper > 0 && num_lower == 0) word->small_caps = true; } word->SetScriptPositions(); } } // Factored helper considers the indexed word and updates all the pointed // values. static void EvaluateWord(const PointerVector& words, int index, float* rating, float* certainty, bool* bad, bool* valid_permuter, int* right, int* next_left) { *right = -MAX_INT32; *next_left = MAX_INT32; if (index < words.size()) { WERD_CHOICE* choice = words[index]->best_choice; if (choice == NULL) { *bad = true; } else { *rating += choice->rating(); *certainty = MIN(*certainty, choice->certainty()); if (!Dict::valid_word_permuter(choice->permuter(), false)) *valid_permuter = false; } *right = words[index]->word->bounding_box().right(); if (index + 1 < words.size()) *next_left = words[index + 1]->word->bounding_box().left(); } else { *valid_permuter = false; *bad = true; } } // Helper chooses the best combination of words, transferring good ones from // new_words to best_words. To win, a new word must have (better rating and // certainty) or (better permuter status and rating within rating ratio and // certainty within certainty margin) than current best. // All the new_words are consumed (moved to best_words or deleted.) // The return value is the number of new_words used minus the number of // best_words that remain in the output. static int SelectBestWords(double rating_ratio, double certainty_margin, bool debug, PointerVector* new_words, PointerVector* best_words) { // Process the smallest groups of words that have an overlapping word // boundary at the end. GenericVector out_words; // Index into each word vector (best, new). int b = 0, n = 0; int num_best = 0, num_new = 0; while (b < best_words->size() || n < new_words->size()) { // Start of the current run in each. int start_b = b, start_n = n; // Rating of the current run in each. float b_rating = 0.0f, n_rating = 0.0f; // Certainty of the current run in each. float b_certainty = 0.0f, n_certainty = 0.0f; // True if any word is missing its best choice. bool b_bad = false, n_bad = false; // True if all words have a valid permuter. bool b_valid_permuter = true, n_valid_permuter = true; while (b < best_words->size() || n < new_words->size()) { int b_right = -MAX_INT32; int next_b_left = MAX_INT32; EvaluateWord(*best_words, b, &b_rating, &b_certainty, &b_bad, &b_valid_permuter, &b_right, &next_b_left); int n_right = -MAX_INT32; int next_n_left = MAX_INT32; EvaluateWord(*new_words, n, &n_rating, &n_certainty, &n_bad, &n_valid_permuter, &n_right, &next_n_left); if (MAX(b_right, n_right) < MIN(next_b_left, next_n_left)) { // The word breaks overlap. [start_b,b] and [start_n, n] match. break; } // Keep searching for the matching word break. if ((b_right < n_right && b < best_words->size()) || n == new_words->size()) ++b; else ++n; } bool new_better = false; if (!n_bad && (b_bad || (n_certainty > b_certainty && n_rating < b_rating) || (!b_valid_permuter && n_valid_permuter && n_rating < b_rating * rating_ratio && n_certainty > b_certainty - certainty_margin))) { // New is better. for (int i = start_n; i <= n; ++i) { out_words.push_back((*new_words)[i]); (*new_words)[i] = NULL; ++num_new; } new_better = true; } else if (!b_bad) { // Current best is better. for (int i = start_b; i <= b; ++i) { out_words.push_back((*best_words)[i]); (*best_words)[i] = NULL; ++num_best; } } int end_b = b < best_words->size() ? b + 1 : b; int end_n = n < new_words->size() ? n + 1 : n; if (debug) { tprintf("%d new words %s than %d old words: r: %g v %g c: %g v %g" " valid dict: %d v %d\n", end_n - start_n, new_better ? "better" : "worse", end_b - start_b, n_rating, b_rating, n_certainty, b_certainty, n_valid_permuter, b_valid_permuter); } // Move on to the next group. b = end_b; n = end_n; } // Transfer from out_words to best_words. best_words->clear(); for (int i = 0; i < out_words.size(); ++i) best_words->push_back(out_words[i]); return num_new - num_best; } // Helper to recognize the word using the given (language-specific) tesseract. // Returns positive if this recognizer found more new best words than the // number kept from best_words. int Tesseract::RetryWithLanguage(const WordData& word_data, WordRecognizer recognizer, WERD_RES** in_word, PointerVector* best_words) { bool debug = classify_debug_level || cube_debug_level; if (debug) { tprintf("Trying word using lang %s, oem %d\n", lang.string(), static_cast(tessedit_ocr_engine_mode)); } // Run the recognizer on the word. PointerVector new_words; (this->*recognizer)(word_data, in_word, &new_words); if (new_words.empty()) { // Transfer input word to new_words, as the classifier must have put // the result back in the input. new_words.push_back(*in_word); *in_word = NULL; } if (debug) { for (int i = 0; i < new_words.size(); ++i) new_words[i]->DebugTopChoice("Lang result"); } // Initial version is a bit of a hack based on better certainty and rating // (to reduce false positives from cube) or a dictionary vs non-dictionary // word. return SelectBestWords(classify_max_rating_ratio, classify_max_certainty_margin, debug, &new_words, best_words); } // Helper returns true if all the words are acceptable. static bool WordsAcceptable(const PointerVector& words) { for (int w = 0; w < words.size(); ++w) { if (words[w]->tess_failed || !words[w]->tess_accepted) return false; } return true; } // Moves good-looking "noise"/diacritics from the reject list to the main // blob list on the current word. Returns true if anything was done, and // sets make_next_word_fuzzy if blob(s) were added to the end of the word. bool Tesseract::ReassignDiacritics(int pass, PAGE_RES_IT* pr_it, bool* make_next_word_fuzzy) { *make_next_word_fuzzy = false; WERD* real_word = pr_it->word()->word; if (real_word->rej_cblob_list()->empty() || real_word->cblob_list()->empty() || real_word->rej_cblob_list()->length() > noise_maxperword) return false; real_word->rej_cblob_list()->sort(&C_BLOB::SortByXMiddle); // Get the noise outlines into a vector with matching bool map. GenericVector outlines; real_word->GetNoiseOutlines(&outlines); GenericVector word_wanted; GenericVector overlapped_any_blob; GenericVector target_blobs; AssignDiacriticsToOverlappingBlobs(outlines, pass, real_word, pr_it, &word_wanted, &overlapped_any_blob, &target_blobs); // Filter the outlines that overlapped any blob and put them into the word // now. This simplifies the remaining task and also makes it more accurate // as it has more completed blobs to work on. GenericVector wanted; GenericVector wanted_blobs; GenericVector wanted_outlines; int num_overlapped = 0; int num_overlapped_used = 0; for (int i = 0; i < overlapped_any_blob.size(); ++i) { if (overlapped_any_blob[i]) { ++num_overlapped; if (word_wanted[i]) ++num_overlapped_used; wanted.push_back(word_wanted[i]); wanted_blobs.push_back(target_blobs[i]); wanted_outlines.push_back(outlines[i]); outlines[i] = NULL; } } real_word->AddSelectedOutlines(wanted, wanted_blobs, wanted_outlines, NULL); AssignDiacriticsToNewBlobs(outlines, pass, real_word, pr_it, &word_wanted, &target_blobs); int non_overlapped = 0; int non_overlapped_used = 0; for (int i = 0; i < word_wanted.size(); ++i) { if (word_wanted[i]) ++non_overlapped_used; if (outlines[i] != NULL) ++non_overlapped_used; } if (debug_noise_removal) { tprintf("Used %d/%d overlapped %d/%d non-overlaped diacritics on word:", num_overlapped_used, num_overlapped, non_overlapped_used, non_overlapped); real_word->bounding_box().print(); } // Now we have decided which outlines we want, put them into the real_word. if (real_word->AddSelectedOutlines(word_wanted, target_blobs, outlines, make_next_word_fuzzy)) { pr_it->MakeCurrentWordFuzzy(); } // TODO(rays) Parts of combos have a deep copy of the real word, and need // to have their noise outlines moved/assigned in the same way!! return num_overlapped_used != 0 || non_overlapped_used != 0; } // Attempts to put noise/diacritic outlines into the blobs that they overlap. // Input: a set of noisy outlines that probably belong to the real_word. // Output: word_wanted indicates which outlines are to be assigned to a blob, // target_blobs indicates which to assign to, and overlapped_any_blob is // true for all outlines that overlapped a blob. void Tesseract::AssignDiacriticsToOverlappingBlobs( const GenericVector& outlines, int pass, WERD* real_word, PAGE_RES_IT* pr_it, GenericVector* word_wanted, GenericVector* overlapped_any_blob, GenericVector* target_blobs) { GenericVector blob_wanted; word_wanted->init_to_size(outlines.size(), false); overlapped_any_blob->init_to_size(outlines.size(), false); target_blobs->init_to_size(outlines.size(), NULL); // For each real blob, find the outlines that seriously overlap it. // A single blob could be several merged characters, so there can be quite // a few outlines overlapping, and the full engine needs to be used to chop // and join to get a sensible result. C_BLOB_IT blob_it(real_word->cblob_list()); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { C_BLOB* blob = blob_it.data(); TBOX blob_box = blob->bounding_box(); blob_wanted.init_to_size(outlines.size(), false); int num_blob_outlines = 0; for (int i = 0; i < outlines.size(); ++i) { if (blob_box.major_x_overlap(outlines[i]->bounding_box()) && !(*word_wanted)[i]) { blob_wanted[i] = true; (*overlapped_any_blob)[i] = true; ++num_blob_outlines; } } if (debug_noise_removal) { tprintf("%d noise outlines overlap blob at:", num_blob_outlines); blob_box.print(); } // If any outlines overlap the blob, and not too many, classify the blob // (using the full engine, languages and all), and choose the maximal // combination of outlines that doesn't hurt the end-result classification // by too much. Mark them as wanted. if (0 < num_blob_outlines && num_blob_outlines < noise_maxperblob) { if (SelectGoodDiacriticOutlines(pass, noise_cert_basechar, pr_it, blob, outlines, num_blob_outlines, &blob_wanted)) { for (int i = 0; i < blob_wanted.size(); ++i) { if (blob_wanted[i]) { // Claim the outline and record where it is going. (*word_wanted)[i] = true; (*target_blobs)[i] = blob; } } } } } } // Attempts to assign non-overlapping outlines to their nearest blobs or // make new blobs out of them. void Tesseract::AssignDiacriticsToNewBlobs( const GenericVector& outlines, int pass, WERD* real_word, PAGE_RES_IT* pr_it, GenericVector* word_wanted, GenericVector* target_blobs) { GenericVector blob_wanted; word_wanted->init_to_size(outlines.size(), false); target_blobs->init_to_size(outlines.size(), NULL); // Check for outlines that need to be turned into stand-alone blobs. for (int i = 0; i < outlines.size(); ++i) { if (outlines[i] == NULL) continue; // Get a set of adjacent outlines that don't overlap any existing blob. blob_wanted.init_to_size(outlines.size(), false); int num_blob_outlines = 0; TBOX total_ol_box(outlines[i]->bounding_box()); while (i < outlines.size() && outlines[i] != NULL) { blob_wanted[i] = true; total_ol_box += outlines[i]->bounding_box(); ++i; ++num_blob_outlines; } // Find the insertion point. C_BLOB_IT blob_it(real_word->cblob_list()); while (!blob_it.at_last() && blob_it.data_relative(1)->bounding_box().left() <= total_ol_box.left()) { blob_it.forward(); } // Choose which combination of them we actually want and where to put // them. if (debug_noise_removal) tprintf("Num blobless outlines = %d\n", num_blob_outlines); C_BLOB* left_blob = blob_it.data(); TBOX left_box = left_blob->bounding_box(); C_BLOB* right_blob = blob_it.at_last() ? NULL : blob_it.data_relative(1); if ((left_box.x_overlap(total_ol_box) || right_blob == NULL || !right_blob->bounding_box().x_overlap(total_ol_box)) && SelectGoodDiacriticOutlines(pass, noise_cert_disjoint, pr_it, left_blob, outlines, num_blob_outlines, &blob_wanted)) { if (debug_noise_removal) tprintf("Added to left blob\n"); for (int j = 0; j < blob_wanted.size(); ++j) { if (blob_wanted[j]) { (*word_wanted)[j] = true; (*target_blobs)[j] = left_blob; } } } else if (right_blob != NULL && (!left_box.x_overlap(total_ol_box) || right_blob->bounding_box().x_overlap(total_ol_box)) && SelectGoodDiacriticOutlines(pass, noise_cert_disjoint, pr_it, right_blob, outlines, num_blob_outlines, &blob_wanted)) { if (debug_noise_removal) tprintf("Added to right blob\n"); for (int j = 0; j < blob_wanted.size(); ++j) { if (blob_wanted[j]) { (*word_wanted)[j] = true; (*target_blobs)[j] = right_blob; } } } else if (SelectGoodDiacriticOutlines(pass, noise_cert_punc, pr_it, NULL, outlines, num_blob_outlines, &blob_wanted)) { if (debug_noise_removal) tprintf("Fitted between blobs\n"); for (int j = 0; j < blob_wanted.size(); ++j) { if (blob_wanted[j]) { (*word_wanted)[j] = true; (*target_blobs)[j] = NULL; } } } } } // Starting with ok_outlines set to indicate which outlines overlap the blob, // chooses the optimal set (approximately) and returns true if any outlines // are desired, in which case ok_outlines indicates which ones. bool Tesseract::SelectGoodDiacriticOutlines( int pass, float certainty_threshold, PAGE_RES_IT* pr_it, C_BLOB* blob, const GenericVector& outlines, int num_outlines, GenericVector* ok_outlines) { STRING best_str; float target_cert = certainty_threshold; if (blob != NULL) { float target_c2; target_cert = ClassifyBlobAsWord(pass, pr_it, blob, &best_str, &target_c2); if (debug_noise_removal) { tprintf("No Noise blob classified as %s=%g(%g) at:", best_str.string(), target_cert, target_c2); blob->bounding_box().print(); } target_cert -= (target_cert - certainty_threshold) * noise_cert_factor; } GenericVector test_outlines = *ok_outlines; // Start with all the outlines in. STRING all_str; GenericVector best_outlines = *ok_outlines; float best_cert = ClassifyBlobPlusOutlines(test_outlines, outlines, pass, pr_it, blob, &all_str); if (debug_noise_removal) { TBOX ol_box; for (int i = 0; i < test_outlines.size(); ++i) { if (test_outlines[i]) ol_box += outlines[i]->bounding_box(); } tprintf("All Noise blob classified as %s=%g, delta=%g at:", all_str.string(), best_cert, best_cert - target_cert); ol_box.print(); } // Iteratively zero out the bit that improves the certainty the most, until // we get past the threshold, have zero bits, or fail to improve. int best_index = 0; // To zero out. while (num_outlines > 1 && best_index >= 0 && (blob == NULL || best_cert < target_cert || blob != NULL)) { // Find the best bit to zero out. best_index = -1; for (int i = 0; i < outlines.size(); ++i) { if (test_outlines[i]) { test_outlines[i] = false; STRING str; float cert = ClassifyBlobPlusOutlines(test_outlines, outlines, pass, pr_it, blob, &str); if (debug_noise_removal) { TBOX ol_box; for (int j = 0; j < outlines.size(); ++j) { if (test_outlines[j]) ol_box += outlines[j]->bounding_box(); tprintf("%d", test_outlines[j]); } tprintf(" blob classified as %s=%g, delta=%g) at:", str.string(), cert, cert - target_cert); ol_box.print(); } if (cert > best_cert) { best_cert = cert; best_index = i; best_outlines = test_outlines; } test_outlines[i] = true; } } if (best_index >= 0) { test_outlines[best_index] = false; --num_outlines; } } if (best_cert >= target_cert) { // Save the best combination. *ok_outlines = best_outlines; if (debug_noise_removal) { tprintf("%s noise combination ", blob ? "Adding" : "New"); for (int i = 0; i < best_outlines.size(); ++i) { tprintf("%d", best_outlines[i]); } tprintf(" yields certainty %g, beating target of %g\n", best_cert, target_cert); } return true; } return false; } // Classifies the given blob plus the outlines flagged by ok_outlines, undoes // the inclusion of the outlines, and returns the certainty of the raw choice. float Tesseract::ClassifyBlobPlusOutlines( const GenericVector& ok_outlines, const GenericVector& outlines, int pass_n, PAGE_RES_IT* pr_it, C_BLOB* blob, STRING* best_str) { C_OUTLINE_IT ol_it; C_OUTLINE* first_to_keep = NULL; if (blob != NULL) { // Add the required outlines to the blob. ol_it.set_to_list(blob->out_list()); first_to_keep = ol_it.data(); } for (int i = 0; i < ok_outlines.size(); ++i) { if (ok_outlines[i]) { // This outline is to be added. if (blob == NULL) { blob = new C_BLOB(outlines[i]); ol_it.set_to_list(blob->out_list()); } else { ol_it.add_before_stay_put(outlines[i]); } } } float c2; float cert = ClassifyBlobAsWord(pass_n, pr_it, blob, best_str, &c2); ol_it.move_to_first(); if (first_to_keep == NULL) { // We created blob. Empty its outlines and delete it. for (; !ol_it.empty(); ol_it.forward()) ol_it.extract(); delete blob; cert = -c2; } else { // Remove the outlines that we put in. for (; ol_it.data() != first_to_keep; ol_it.forward()) { ol_it.extract(); } } return cert; } // Classifies the given blob (part of word_data->word->word) as an individual // word, using languages, chopper etc, returning only the certainty of the // best raw choice, and undoing all the work done to fake out the word. float Tesseract::ClassifyBlobAsWord(int pass_n, PAGE_RES_IT* pr_it, C_BLOB* blob, STRING* best_str, float* c2) { WERD* real_word = pr_it->word()->word; WERD* word = real_word->ConstructFromSingleBlob( real_word->flag(W_BOL), real_word->flag(W_EOL), C_BLOB::deep_copy(blob)); WERD_RES* word_res = pr_it->InsertSimpleCloneWord(*pr_it->word(), word); // Get a new iterator that points to the new word. PAGE_RES_IT it(pr_it->page_res); while (it.word() != word_res && it.word() != NULL) it.forward(); ASSERT_HOST(it.word() == word_res); WordData wd(it); // Force full initialization. SetupWordPassN(1, &wd); classify_word_and_language(pass_n, &it, &wd); if (debug_noise_removal) { tprintf("word xheight=%g, row=%g, range=[%g,%g]\n", word_res->x_height, wd.row->x_height(), wd.word->raw_choice->min_x_height(), wd.word->raw_choice->max_x_height()); } float cert = wd.word->raw_choice->certainty(); float rat = wd.word->raw_choice->rating(); *c2 = rat > 0.0f ? cert * cert / rat : 0.0f; *best_str = wd.word->raw_choice->unichar_string(); it.DeleteCurrentWord(); pr_it->ResetWordIterator(); return cert; } // Generic function for classifying a word. Can be used either for pass1 or // pass2 according to the function passed to recognizer. // word_data holds the word to be recognized, and its block and row, and // pr_it points to the word as well, in case we are running LSTM and it wants // to output multiple words. // Recognizes in the current language, and if successful that is all. // If recognition was not successful, tries all available languages until // it gets a successful result or runs out of languages. Keeps the best result. void Tesseract::classify_word_and_language(int pass_n, PAGE_RES_IT* pr_it, WordData* word_data) { WordRecognizer recognizer = pass_n == 1 ? &Tesseract::classify_word_pass1 : &Tesseract::classify_word_pass2; // Best result so far. PointerVector best_words; // Points to the best result. May be word or in lang_words. WERD_RES* word = word_data->word; clock_t start_t = clock(); if (classify_debug_level || cube_debug_level) { tprintf("%s word with lang %s at:", word->done ? "Already done" : "Processing", most_recently_used_->lang.string()); word->word->bounding_box().print(); } if (word->done) { // If done on pass1, leave it as-is. if (!word->tess_failed) most_recently_used_ = word->tesseract; return; } int sub = sub_langs_.size(); if (most_recently_used_ != this) { // Get the index of the most_recently_used_. for (sub = 0; sub < sub_langs_.size() && most_recently_used_ != sub_langs_[sub]; ++sub) {} } most_recently_used_->RetryWithLanguage( *word_data, recognizer, &word_data->lang_words[sub], &best_words); Tesseract* best_lang_tess = most_recently_used_; if (!WordsAcceptable(best_words)) { // Try all the other languages to see if they are any better. if (most_recently_used_ != this && this->RetryWithLanguage(*word_data, recognizer, &word_data->lang_words[sub_langs_.size()], &best_words) > 0) { best_lang_tess = this; } for (int i = 0; !WordsAcceptable(best_words) && i < sub_langs_.size(); ++i) { if (most_recently_used_ != sub_langs_[i] && sub_langs_[i]->RetryWithLanguage(*word_data, recognizer, &word_data->lang_words[i], &best_words) > 0) { best_lang_tess = sub_langs_[i]; } } } most_recently_used_ = best_lang_tess; if (!best_words.empty()) { if (best_words.size() == 1 && !best_words[0]->combination) { // Move the best single result to the main word. word_data->word->ConsumeWordResults(best_words[0]); } else { // Words came from LSTM, and must be moved to the PAGE_RES properly. word_data->word = best_words.back(); pr_it->ReplaceCurrentWord(&best_words); } ASSERT_HOST(word_data->word->box_word != NULL); } else { tprintf("no best words!!\n"); } clock_t ocr_t = clock(); if (tessedit_timing_debug) { tprintf("%s (ocr took %.2f sec)\n", word->best_choice->unichar_string().string(), static_cast(ocr_t-start_t)/CLOCKS_PER_SEC); } } /** * classify_word_pass1 * * Baseline normalize the word and pass it to Tess. */ void Tesseract::classify_word_pass1(const WordData& word_data, WERD_RES** in_word, PointerVector* out_words) { ROW* row = word_data.row; BLOCK* block = word_data.block; prev_word_best_choice_ = word_data.prev_word != NULL ? word_data.prev_word->word->best_choice : NULL; #ifndef NO_CUBE_BUILD // If we only intend to run cube - run it and return. if (tessedit_ocr_engine_mode == OEM_CUBE_ONLY) { cube_word_pass1(block, row, *in_word); return; } if (tessedit_ocr_engine_mode == OEM_LSTM_ONLY) { if (!(*in_word)->odd_size) { LSTMRecognizeWord(*block, row, *in_word, out_words); if (!out_words->empty()) return; // Successful lstm recognition. } // Fall back to tesseract for failed words or odd words. (*in_word)->SetupForRecognition(unicharset, this, BestPix(), OEM_TESSERACT_ONLY, NULL, classify_bln_numeric_mode, textord_use_cjk_fp_model, poly_allow_detailed_fx, row, block); } #endif WERD_RES* word = *in_word; match_word_pass_n(1, word, row, block); if (!word->tess_failed && !word->word->flag(W_REP_CHAR)) { word->tess_would_adapt = AdaptableWord(word); bool adapt_ok = word_adaptable(word, tessedit_tess_adaption_mode); if (adapt_ok) { // Send word to adaptive classifier for training. word->BestChoiceToCorrectText(); LearnWord(NULL, word); // Mark misadaptions if running blamer. if (word->blamer_bundle != NULL) { word->blamer_bundle->SetMisAdaptionDebug(word->best_choice, wordrec_debug_blamer); } } if (tessedit_enable_doc_dict && !word->IsAmbiguous()) tess_add_doc_word(word->best_choice); } } // Helper to report the result of the xheight fix. void Tesseract::ReportXhtFixResult(bool accept_new_word, float new_x_ht, WERD_RES* word, WERD_RES* new_word) { tprintf("New XHT Match:%s = %s ", word->best_choice->unichar_string().string(), word->best_choice->debug_string().string()); word->reject_map.print(debug_fp); tprintf(" -> %s = %s ", new_word->best_choice->unichar_string().string(), new_word->best_choice->debug_string().string()); new_word->reject_map.print(debug_fp); tprintf(" %s->%s %s %s\n", word->guessed_x_ht ? "GUESS" : "CERT", new_word->guessed_x_ht ? "GUESS" : "CERT", new_x_ht > 0.1 ? "STILL DOUBT" : "OK", accept_new_word ? "ACCEPTED" : ""); } // Run the x-height fix-up, based on min/max top/bottom information in // unicharset. // Returns true if the word was changed. // See the comment in fixxht.cpp for a description of the overall process. bool Tesseract::TrainedXheightFix(WERD_RES *word, BLOCK* block, ROW *row) { int original_misfits = CountMisfitTops(word); if (original_misfits == 0) return false; float baseline_shift = 0.0f; float new_x_ht = ComputeCompatibleXheight(word, &baseline_shift); if (baseline_shift != 0.0f) { // Try the shift on its own first. if (!TestNewNormalization(original_misfits, baseline_shift, word->x_height, word, block, row)) return false; original_misfits = CountMisfitTops(word); if (original_misfits > 0) { float new_baseline_shift; // Now recompute the new x_height. new_x_ht = ComputeCompatibleXheight(word, &new_baseline_shift); if (new_x_ht >= kMinRefitXHeightFraction * word->x_height) { // No test of return value here, as we are definitely making a change // to the word by shifting the baseline. TestNewNormalization(original_misfits, baseline_shift, new_x_ht, word, block, row); } } return true; } else if (new_x_ht >= kMinRefitXHeightFraction * word->x_height) { return TestNewNormalization(original_misfits, 0.0f, new_x_ht, word, block, row); } else { return false; } } // Runs recognition with the test baseline shift and x-height and returns true // if there was an improvement in recognition result. bool Tesseract::TestNewNormalization(int original_misfits, float baseline_shift, float new_x_ht, WERD_RES *word, BLOCK* block, ROW *row) { bool accept_new_x_ht = false; WERD_RES new_x_ht_word(word->word); if (word->blamer_bundle != NULL) { new_x_ht_word.blamer_bundle = new BlamerBundle(); new_x_ht_word.blamer_bundle->CopyTruth(*(word->blamer_bundle)); } new_x_ht_word.x_height = new_x_ht; new_x_ht_word.baseline_shift = baseline_shift; new_x_ht_word.caps_height = 0.0; new_x_ht_word.SetupForRecognition( unicharset, this, BestPix(), tessedit_ocr_engine_mode, NULL, classify_bln_numeric_mode, textord_use_cjk_fp_model, poly_allow_detailed_fx, row, block); match_word_pass_n(2, &new_x_ht_word, row, block); if (!new_x_ht_word.tess_failed) { int new_misfits = CountMisfitTops(&new_x_ht_word); if (debug_x_ht_level >= 1) { tprintf("Old misfits=%d with x-height %f, new=%d with x-height %f\n", original_misfits, word->x_height, new_misfits, new_x_ht); tprintf("Old rating= %f, certainty=%f, new=%f, %f\n", word->best_choice->rating(), word->best_choice->certainty(), new_x_ht_word.best_choice->rating(), new_x_ht_word.best_choice->certainty()); } // The misfits must improve and either the rating or certainty. accept_new_x_ht = new_misfits < original_misfits && (new_x_ht_word.best_choice->certainty() > word->best_choice->certainty() || new_x_ht_word.best_choice->rating() < word->best_choice->rating()); if (debug_x_ht_level >= 1) { ReportXhtFixResult(accept_new_x_ht, new_x_ht, word, &new_x_ht_word); } } if (accept_new_x_ht) { word->ConsumeWordResults(&new_x_ht_word); return true; } return false; } /** * classify_word_pass2 * * Control what to do with the word in pass 2 */ void Tesseract::classify_word_pass2(const WordData& word_data, WERD_RES** in_word, PointerVector* out_words) { // Return if we do not want to run Tesseract. if (tessedit_ocr_engine_mode == OEM_CUBE_ONLY) { return; } ROW* row = word_data.row; BLOCK* block = word_data.block; WERD_RES* word = *in_word; prev_word_best_choice_ = word_data.prev_word != NULL ? word_data.prev_word->word->best_choice : NULL; set_global_subloc_code(SUBLOC_NORM); check_debug_pt(word, 30); if (!word->done) { word->caps_height = 0.0; if (word->x_height == 0.0f) word->x_height = row->x_height(); match_word_pass_n(2, word, row, block); check_debug_pt(word, 40); } SubAndSuperscriptFix(word); if (!word->tess_failed && !word->word->flag(W_REP_CHAR)) { if (unicharset.top_bottom_useful() && unicharset.script_has_xheight() && block->classify_rotation().y() == 0.0f) { // Use the tops and bottoms since they are available. TrainedXheightFix(word, block, row); } set_global_subloc_code(SUBLOC_NORM); } #ifndef GRAPHICS_DISABLED if (tessedit_display_outwords) { if (fx_win == NULL) create_fx_win(); clear_fx_win(); word->rebuild_word->plot(fx_win); TBOX wbox = word->rebuild_word->bounding_box(); fx_win->ZoomToRectangle(wbox.left(), wbox.top(), wbox.right(), wbox.bottom()); ScrollView::Update(); } #endif set_global_subloc_code(SUBLOC_NORM); check_debug_pt(word, 50); } /** * match_word_pass2 * * Baseline normalize the word and pass it to Tess. */ void Tesseract::match_word_pass_n(int pass_n, WERD_RES *word, ROW *row, BLOCK* block) { if (word->tess_failed) return; tess_segment_pass_n(pass_n, word); if (!word->tess_failed) { if (!word->word->flag (W_REP_CHAR)) { word->fix_quotes(); if (tessedit_fix_hyphens) word->fix_hyphens(); /* Don't trust fix_quotes! - though I think I've fixed the bug */ if (word->best_choice->length() != word->box_word->length()) { tprintf("POST FIX_QUOTES FAIL String:\"%s\"; Strlen=%d;" " #Blobs=%d\n", word->best_choice->debug_string().string(), word->best_choice->length(), word->box_word->length()); } word->tess_accepted = tess_acceptable_word(word); // Also sets word->done flag make_reject_map(word, row, pass_n); } } set_word_fonts(word); ASSERT_HOST(word->raw_choice != NULL); } // Helper to return the best rated BLOB_CHOICE in the whole word that matches // the given char_id, or NULL if none can be found. static BLOB_CHOICE* FindBestMatchingChoice(UNICHAR_ID char_id, WERD_RES* word_res) { // Find the corresponding best BLOB_CHOICE from any position in the word_res. BLOB_CHOICE* best_choice = NULL; for (int i = 0; i < word_res->best_choice->length(); ++i) { BLOB_CHOICE* choice = FindMatchingChoice(char_id, word_res->GetBlobChoices(i)); if (choice != NULL) { if (best_choice == NULL || choice->rating() < best_choice->rating()) best_choice = choice; } } return best_choice; } // Helper to insert blob_choice in each location in the leader word if there is // no matching BLOB_CHOICE there already, and correct any incorrect results // in the best_choice. static void CorrectRepcharChoices(BLOB_CHOICE* blob_choice, WERD_RES* word_res) { WERD_CHOICE* word = word_res->best_choice; for (int i = 0; i < word_res->best_choice->length(); ++i) { BLOB_CHOICE* choice = FindMatchingChoice(blob_choice->unichar_id(), word_res->GetBlobChoices(i)); if (choice == NULL) { BLOB_CHOICE_IT choice_it(word_res->GetBlobChoices(i)); choice_it.add_before_stay_put(new BLOB_CHOICE(*blob_choice)); } } // Correct any incorrect results in word. for (int i = 0; i < word->length(); ++i) { if (word->unichar_id(i) != blob_choice->unichar_id()) word->set_unichar_id(blob_choice->unichar_id(), i); } } /** * fix_rep_char() * The word is a repeated char. (Leader.) Find the repeated char character. * Create the appropriate single-word or multi-word sequence according to * the size of spaces in between blobs, and correct the classifications * where some of the characters disagree with the majority. */ void Tesseract::fix_rep_char(PAGE_RES_IT* page_res_it) { WERD_RES *word_res = page_res_it->word(); const WERD_CHOICE &word = *(word_res->best_choice); // Find the frequency of each unique character in the word. SortHelper rep_ch(word.length()); for (int i = 0; i < word.length(); ++i) { rep_ch.Add(word.unichar_id(i), 1); } // Find the most frequent result. UNICHAR_ID maxch_id = INVALID_UNICHAR_ID; // most common char int max_count = rep_ch.MaxCount(&maxch_id); // Find the best exemplar of a classifier result for maxch_id. BLOB_CHOICE* best_choice = FindBestMatchingChoice(maxch_id, word_res); if (best_choice == NULL) { tprintf("Failed to find a choice for %s, occurring %d times\n", word_res->uch_set->debug_str(maxch_id).string(), max_count); return; } word_res->done = TRUE; // Measure the mean space. int gap_count = 0; WERD* werd = word_res->word; C_BLOB_IT blob_it(werd->cblob_list()); C_BLOB* prev_blob = blob_it.data(); for (blob_it.forward(); !blob_it.at_first(); blob_it.forward()) { C_BLOB* blob = blob_it.data(); int gap = blob->bounding_box().left(); gap -= prev_blob->bounding_box().right(); ++gap_count; prev_blob = blob; } // Just correct existing classification. CorrectRepcharChoices(best_choice, word_res); word_res->reject_map.initialise(word.length()); } ACCEPTABLE_WERD_TYPE Tesseract::acceptable_word_string( const UNICHARSET& char_set, const char *s, const char *lengths) { int i = 0; int offset = 0; int leading_punct_count; int upper_count = 0; int hyphen_pos = -1; ACCEPTABLE_WERD_TYPE word_type = AC_UNACCEPTABLE; if (strlen (lengths) > 20) return word_type; /* Single Leading punctuation char*/ if (s[offset] != '\0' && STRING(chs_leading_punct).contains(s[offset])) offset += lengths[i++]; leading_punct_count = i; /* Initial cap */ while (s[offset] != '\0' && char_set.get_isupper(s + offset, lengths[i])) { offset += lengths[i++]; upper_count++; } if (upper_count > 1) { word_type = AC_UPPER_CASE; } else { /* Lower case word, possibly with an initial cap */ while (s[offset] != '\0' && char_set.get_islower(s + offset, lengths[i])) { offset += lengths[i++]; } if (i - leading_punct_count < quality_min_initial_alphas_reqd) goto not_a_word; /* Allow a single hyphen in a lower case word - don't trust upper case - I've seen several cases of "H" -> "I-I" */ if (lengths[i] == 1 && s[offset] == '-') { hyphen_pos = i; offset += lengths[i++]; if (s[offset] != '\0') { while ((s[offset] != '\0') && char_set.get_islower(s + offset, lengths[i])) { offset += lengths[i++]; } if (i < hyphen_pos + 3) goto not_a_word; } } else { /* Allow "'s" in NON hyphenated lower case words */ if (lengths[i] == 1 && (s[offset] == '\'') && lengths[i + 1] == 1 && (s[offset + lengths[i]] == 's')) { offset += lengths[i++]; offset += lengths[i++]; } } if (upper_count > 0) word_type = AC_INITIAL_CAP; else word_type = AC_LOWER_CASE; } /* Up to two different, constrained trailing punctuation chars */ if (lengths[i] == 1 && s[offset] != '\0' && STRING(chs_trailing_punct1).contains(s[offset])) offset += lengths[i++]; if (lengths[i] == 1 && s[offset] != '\0' && i > 0 && s[offset - lengths[i - 1]] != s[offset] && STRING(chs_trailing_punct2).contains (s[offset])) offset += lengths[i++]; if (s[offset] != '\0') word_type = AC_UNACCEPTABLE; not_a_word: if (word_type == AC_UNACCEPTABLE) { /* Look for abbreviation string */ i = 0; offset = 0; if (s[0] != '\0' && char_set.get_isupper(s, lengths[0])) { word_type = AC_UC_ABBREV; while (s[offset] != '\0' && char_set.get_isupper(s + offset, lengths[i]) && lengths[i + 1] == 1 && s[offset + lengths[i]] == '.') { offset += lengths[i++]; offset += lengths[i++]; } } else if (s[0] != '\0' && char_set.get_islower(s, lengths[0])) { word_type = AC_LC_ABBREV; while (s[offset] != '\0' && char_set.get_islower(s + offset, lengths[i]) && lengths[i + 1] == 1 && s[offset + lengths[i]] == '.') { offset += lengths[i++]; offset += lengths[i++]; } } if (s[offset] != '\0') word_type = AC_UNACCEPTABLE; } return word_type; } BOOL8 Tesseract::check_debug_pt(WERD_RES *word, int location) { BOOL8 show_map_detail = FALSE; inT16 i; if (!test_pt) return FALSE; tessedit_rejection_debug.set_value (FALSE); debug_x_ht_level.set_value(0); if (word->word->bounding_box ().contains (FCOORD (test_pt_x, test_pt_y))) { if (location < 0) return TRUE; // For breakpoint use tessedit_rejection_debug.set_value (TRUE); debug_x_ht_level.set_value(2); tprintf ("\n\nTESTWD::"); switch (location) { case 0: tprintf ("classify_word_pass1 start\n"); word->word->print(); break; case 10: tprintf ("make_reject_map: initial map"); break; case 20: tprintf ("make_reject_map: after NN"); break; case 30: tprintf ("classify_word_pass2 - START"); break; case 40: tprintf ("classify_word_pass2 - Pre Xht"); break; case 50: tprintf ("classify_word_pass2 - END"); show_map_detail = TRUE; break; case 60: tprintf ("fixspace"); break; case 70: tprintf ("MM pass START"); break; case 80: tprintf ("MM pass END"); break; case 90: tprintf ("After Poor quality rejection"); break; case 100: tprintf ("unrej_good_quality_words - START"); break; case 110: tprintf ("unrej_good_quality_words - END"); break; case 120: tprintf ("Write results pass"); show_map_detail = TRUE; break; } if (word->best_choice != NULL) { tprintf(" \"%s\" ", word->best_choice->unichar_string().string()); word->reject_map.print(debug_fp); tprintf("\n"); if (show_map_detail) { tprintf("\"%s\"\n", word->best_choice->unichar_string().string()); for (i = 0; word->best_choice->unichar_string()[i] != '\0'; i++) { tprintf("**** \"%c\" ****\n", word->best_choice->unichar_string()[i]); word->reject_map[i].full_print(debug_fp); } } } else { tprintf("null best choice\n"); } tprintf ("Tess Accepted: %s\n", word->tess_accepted ? "TRUE" : "FALSE"); tprintf ("Done flag: %s\n\n", word->done ? "TRUE" : "FALSE"); return TRUE; } else { return FALSE; } } /** * find_modal_font * * Find the modal font and remove from the stats. */ static void find_modal_font( //good chars in word STATS *fonts, //font stats inT16 *font_out, //output font inT8 *font_count //output count ) { inT16 font; //font index inT32 count; //pile couat if (fonts->get_total () > 0) { font = (inT16) fonts->mode (); *font_out = font; count = fonts->pile_count (font); *font_count = count < MAX_INT8 ? count : MAX_INT8; fonts->add (font, -*font_count); } else { *font_out = -1; *font_count = 0; } } /** * set_word_fonts * * Get the fonts for the word. */ void Tesseract::set_word_fonts(WERD_RES *word) { // Don't try to set the word fonts for a cube word, as the configs // will be meaningless. if (word->chopped_word == NULL) return; ASSERT_HOST(word->best_choice != NULL); int fontinfo_size = get_fontinfo_table().size(); if (fontinfo_size == 0) return; GenericVector font_total_score; font_total_score.init_to_size(fontinfo_size, 0); word->italic = 0; word->bold = 0; // Compute the font scores for the word if (tessedit_debug_fonts) { tprintf("Examining fonts in %s\n", word->best_choice->debug_string().string()); } for (int b = 0; b < word->best_choice->length(); ++b) { BLOB_CHOICE* choice = word->GetBlobChoice(b); if (choice == NULL) continue; const GenericVector& fonts = choice->fonts(); for (int f = 0; f < fonts.size(); ++f) { int fontinfo_id = fonts[f].fontinfo_id; if (0 <= fontinfo_id && fontinfo_id < fontinfo_size) { font_total_score[fontinfo_id] += fonts[f].score; } } } // Find the top and 2nd choice for the word. int score1 = 0, score2 = 0; inT16 font_id1 = -1, font_id2 = -1; for (int f = 0; f < fontinfo_size; ++f) { if (tessedit_debug_fonts && font_total_score[f] > 0) { tprintf("Font %s, total score = %d\n", fontinfo_table_.get(f).name, font_total_score[f]); } if (font_total_score[f] > score1) { score2 = score1; font_id2 = font_id1; score1 = font_total_score[f]; font_id1 = f; } else if (font_total_score[f] > score2) { score2 = font_total_score[f]; font_id2 = f; } } word->fontinfo = font_id1 >= 0 ? &fontinfo_table_.get(font_id1) : NULL; word->fontinfo2 = font_id2 >= 0 ? &fontinfo_table_.get(font_id2) : NULL; // Each score has a limit of MAX_UINT16, so divide by that to get the number // of "votes" for that font, ie number of perfect scores. word->fontinfo_id_count = ClipToRange(score1 / MAX_UINT16, 1, MAX_INT8); word->fontinfo_id2_count = ClipToRange(score2 / MAX_UINT16, 0, MAX_INT8); if (score1 > 0) { FontInfo fi = fontinfo_table_.get(font_id1); if (tessedit_debug_fonts) { if (word->fontinfo_id2_count > 0) { tprintf("Word modal font=%s, score=%d, 2nd choice %s/%d\n", fi.name, word->fontinfo_id_count, fontinfo_table_.get(font_id2).name, word->fontinfo_id2_count); } else { tprintf("Word modal font=%s, score=%d. No 2nd choice\n", fi.name, word->fontinfo_id_count); } } word->italic = (fi.is_italic() ? 1 : -1) * word->fontinfo_id_count; word->bold = (fi.is_bold() ? 1 : -1) * word->fontinfo_id_count; } } /** * font_recognition_pass * * Smooth the fonts for the document. */ void Tesseract::font_recognition_pass(PAGE_RES* page_res) { PAGE_RES_IT page_res_it(page_res); WERD_RES *word; // current word STATS doc_fonts(0, font_table_size_); // font counters // Gather font id statistics. for (page_res_it.restart_page(); page_res_it.word() != NULL; page_res_it.forward()) { word = page_res_it.word(); if (word->fontinfo != NULL) { doc_fonts.add(word->fontinfo->universal_id, word->fontinfo_id_count); } if (word->fontinfo2 != NULL) { doc_fonts.add(word->fontinfo2->universal_id, word->fontinfo_id2_count); } } inT16 doc_font; // modal font inT8 doc_font_count; // modal font find_modal_font(&doc_fonts, &doc_font, &doc_font_count); if (doc_font_count == 0) return; // Get the modal font pointer. const FontInfo* modal_font = NULL; for (page_res_it.restart_page(); page_res_it.word() != NULL; page_res_it.forward()) { word = page_res_it.word(); if (word->fontinfo != NULL && word->fontinfo->universal_id == doc_font) { modal_font = word->fontinfo; break; } if (word->fontinfo2 != NULL && word->fontinfo2->universal_id == doc_font) { modal_font = word->fontinfo2; break; } } ASSERT_HOST(modal_font != NULL); // Assign modal font to weak words. for (page_res_it.restart_page(); page_res_it.word() != NULL; page_res_it.forward()) { word = page_res_it.word(); int length = word->best_choice->length(); int count = word->fontinfo_id_count; if (!(count == length || (length > 3 && count >= length * 3 / 4))) { word->fontinfo = modal_font; // Counts only get 1 as it came from the doc. word->fontinfo_id_count = 1; word->italic = modal_font->is_italic() ? 1 : -1; word->bold = modal_font->is_bold() ? 1 : -1; } } } // If a word has multiple alternates check if the best choice is in the // dictionary. If not, replace it with an alternate that exists in the // dictionary. void Tesseract::dictionary_correction_pass(PAGE_RES *page_res) { PAGE_RES_IT word_it(page_res); for (WERD_RES* word = word_it.word(); word != NULL; word = word_it.forward()) { if (word->best_choices.singleton()) continue; // There are no alternates. WERD_CHOICE* best = word->best_choice; if (word->tesseract->getDict().valid_word(*best) != 0) continue; // The best choice is in the dictionary. WERD_CHOICE_IT choice_it(&word->best_choices); for (choice_it.mark_cycle_pt(); !choice_it.cycled_list(); choice_it.forward()) { WERD_CHOICE* alternate = choice_it.data(); if (word->tesseract->getDict().valid_word(*alternate)) { // The alternate choice is in the dictionary. if (tessedit_bigram_debug) { tprintf("Dictionary correction replaces best choice '%s' with '%s'\n", best->unichar_string().string(), alternate->unichar_string().string()); } // Replace the 'best' choice with a better choice. word->ReplaceBestChoice(alternate); break; } } } } } // namespace tesseract