#include "leptonica/include/allheaders.h" #include "tesseract/api/baseapi.h" #include "tesseract/unittest/lstm_test.h" namespace tesseract { namespace { TEST_F(LSTMTrainerTest, EncodesEng) { TestEncodeDecodeBoth("eng", "The quick brown 'fox' jumps over: the lazy dog!"); } TEST_F(LSTMTrainerTest, EncodesKan) { TestEncodeDecodeBoth("kan", "ಫ್ರಬ್ರವರಿ ತತ್ವಾಂಶಗಳೆಂದರೆ ಮತ್ತು ಜೊತೆಗೆ ಕ್ರಮವನ್ನು"); } TEST_F(LSTMTrainerTest, EncodesKor) { TestEncodeDecodeBoth("kor", "이는 것으로 다시 넣을 수는 있지만 선택의 의미는"); } TEST_F(LSTMTrainerTest, MapCoder) { LSTMTrainer fra_trainer; fra_trainer.InitCharSet(TestDataNameToPath("fra.traineddata")); LSTMTrainer deu_trainer; deu_trainer.InitCharSet(TestDataNameToPath("deu.traineddata")); // A string that uses characters common to French and German. string kTestStr = "The quick brown 'fox' jumps over: the lazy dog!"; GenericVector deu_labels; EXPECT_TRUE(deu_trainer.EncodeString(kTestStr.c_str(), &deu_labels)); // The french trainer cannot decode them correctly. STRING badly_decoded = fra_trainer.DecodeLabels(deu_labels); string bad_str(&badly_decoded[0], badly_decoded.length()); EXPECT_NE(kTestStr, bad_str); // Encode the string as fra. GenericVector fra_labels; EXPECT_TRUE(fra_trainer.EncodeString(kTestStr.c_str(), &fra_labels)); // Use the mapper to compute what the labels are as deu. std::vector mapping = fra_trainer.MapRecoder(deu_trainer.GetUnicharset(), deu_trainer.GetRecoder()); GenericVector mapped_fra_labels(fra_labels.size(), -1); for (int i = 0; i < fra_labels.size(); ++i) { mapped_fra_labels[i] = mapping[fra_labels[i]]; EXPECT_NE(-1, mapped_fra_labels[i]) << "i=" << i << ", ch=" << kTestStr[i]; EXPECT_EQ(mapped_fra_labels[i], deu_labels[i]) << "i=" << i << ", ch=" << kTestStr[i] << " has deu label=" << deu_labels[i] << ", but mapped to " << mapped_fra_labels[i]; } // The german trainer can now decode them correctly. STRING decoded = deu_trainer.DecodeLabels(mapped_fra_labels); string ok_str(&decoded[0], decoded.length()); EXPECT_EQ(kTestStr, ok_str); } // Tests that the actual fra model can be converted to the deu character set // and still read an eng image with 100% accuracy. TEST_F(LSTMTrainerTest, ConvertModel) { // Setup a trainer with a deu charset. LSTMTrainer deu_trainer; deu_trainer.InitCharSet(TestDataNameToPath("deu.traineddata")); // Load the fra traineddata, strip out the model, and save to a tmp file. TessdataManager mgr; string fra_data = file::JoinPath( FLAGS_test_srcdir, "tessdata_best", "fra.traineddata"); CHECK(mgr.Init(fra_data.c_str())) << "Failed to load " << fra_data; string model_path = file::JoinPath(FLAGS_test_tmpdir, "fra.lstm"); CHECK(mgr.ExtractToFile(model_path.c_str())); // Load the fra model into the deu_trainer, and save the converted model. CHECK(deu_trainer.TryLoadingCheckpoint(model_path.c_str(), fra_data.c_str())) << "Failed checkpoint load for " << model_path << " and " << fra_data; string deu_data = file::JoinPath(FLAGS_test_tmpdir, "deu.traineddata"); CHECK(deu_trainer.SaveTraineddata(deu_data.c_str())); // Now run the saved model on phototest. (See BasicTesseractTest in // baseapi_test.cc). TessBaseAPI api; api.Init(FLAGS_test_tmpdir.c_str(), "deu", tesseract::OEM_LSTM_ONLY); Pix *src_pix = pixRead(TestDataNameToPath("phototest.tif").c_str()); CHECK(src_pix); api.SetImage(src_pix); std::unique_ptr result(api.GetUTF8Text()); string truth_text; CHECK_OK(file::GetContents(TestDataNameToPath("phototest.gold.txt"), &truth_text, file::Defaults())); EXPECT_STREQ(truth_text.c_str(), result.get()); pixDestroy(&src_pix); } } // namespace } // namespace tesseract